2008 |
47 | EE | Isabelle Guyon,
Amir Saffari,
Gideon Dror,
Gavin C. Cawley:
Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge.
Neural Networks 21(2-3): 544-550 (2008) |
2007 |
46 | EE | Gavin C. Cawley:
Model Selection for Kernel Probit Regression.
ESANN 2007: 217-222 |
45 | EE | Gavin C. Cawley,
Gareth J. Janacek,
Nicola L. C. Talbot:
Generalised Kernel Machines.
IJCNN 2007: 1720-1725 |
44 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Agnostic Learning versus Prior Knowledge in the Design of Kernel Machines.
IJCNN 2007: 1732-1737 |
43 | EE | Isabelle Guyon,
Amir Saffari,
Gideon Dror,
Gavin C. Cawley:
Agnostic Learning vs. Prior Knowledge Challenge.
IJCNN 2007: 829-834 |
42 | EE | Gavin C. Cawley:
An Empirical Evaluation of the Fuzzy Kernel Perceptron.
IEEE Transactions on Neural Networks 18(3): 935-937 (2007) |
41 | EE | Gavin C. Cawley,
Gareth J. Janacek,
Malcolm R. Haylock,
Stephen R. Dorling:
Predictive uncertainty in environmental modelling.
Neural Networks 20(4): 537-549 (2007) |
40 | EE | Kamel Saadi,
Nicola L. C. Talbot,
Gavin C. Cawley:
Optimally regularised kernel Fisher discriminant classification.
Neural Networks 20(7): 832-841 (2007) |
2006 |
39 | EE | Gavin C. Cawley:
Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs.
IJCNN 2006: 1661-1668 |
38 | EE | Gavin C. Cawley,
Malcolm R. Haylock,
Stephen R. Dorling:
Predictive Uncertainty in Environmental Modelling.
IJCNN 2006: 5347-5354 |
37 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Mark Girolami:
Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation.
NIPS 2006: 209-216 |
36 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
Bioinformatics 22(19): 2348-2355 (2006) |
35 | EE | Uwe Schlink,
Olf Herbarth,
Matthias Richter,
Stephen R. Dorling,
Giuseppe Nunnari,
Gavin C. Cawley,
Emil Pelikán:
Statistical models to assess the health effects and to forecast ground-level ozone.
Environmental Modelling and Software 21(4): 547-558 (2006) |
34 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Gareth J. Janacek,
Mike W. Peck:
Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens.
IEEE Transactions on Neural Networks 17(2): 471-481 (2006) |
33 | EE | Jochen J. Steil,
Gavin C. Cawley,
Fabrice Rossi:
New Issues in Neurocomputing.
Neurocomputing 69(7-9): 625-626 (2006) |
2005 |
32 | EE | Kee Khoon Lee,
Gavin C. Cawley,
Michael W. Bevan:
sparse Bayesian promoter based gene classification.
ESANN 2005: 527-532 |
31 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Olivier Chapelle:
Estimating Predictive Variances with Kernel Ridge Regression.
MLCW 2005: 56-77 |
30 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Constructing Bayesian formulations of sparse kernel learning methods.
Neural Networks 18(5-6): 674-683 (2005) |
29 | EE | Jochen J. Steil,
Gavin C. Cawley,
Thomas Villmann:
Trends in Neurocomputing at ESANN 2004.
Neurocomputing 64: 1-4 (2005) |
28 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
The evidence framework applied to sparse kernel logistic regression.
Neurocomputing 64: 119-135 (2005) |
2004 |
27 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Gareth J. Janacek,
Michael Peck:
Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis.
Deterministic and Statistical Methods in Machine Learning 2004: 37-55 |
26 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Sparse Bayesian kernel logistic regression.
ESANN 2004: 133-138 |
25 | EE | Kamel Saadi,
Nicola L. C. Talbot,
Gavin C. Cawley:
Optimally Regularised Kernel Fisher Discriminant Analysis.
ICPR (2) 2004: 427-430 |
24 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient Model Selection for Kernel Logistic Regression.
ICPR (2) 2004: 439-442 |
23 | EE | Giuseppe Nunnari,
Stephen R. Dorling,
Uwe Schlink,
Gavin C. Cawley,
Robert J. Foxall,
Tim Chatterton:
Modelling SO2 concentration at a point with statistical approaches.
Environmental Modelling and Software 19(10): 887-905 (2004) |
22 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines.
Neural Networks 17(10): 1467-1475 (2004) |
21 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Robert J. Foxall,
Stephen R. Dorling,
Danilo P. Mandic:
Heteroscedastic kernel ridge regression.
Neurocomputing 57: 105-124 (2004) |
20 | EE | Barry-John Theobald,
J. Andrew Bangham,
Iain A. Matthews,
Gavin C. Cawley:
Near-videorealistic synthetic talking faces: implementation and evaluation.
Speech Communication 44(1-4): 127-140 (2004) |
2003 |
19 | EE | Gavin C. Cawley,
Malcolm R. Haylock,
Stephen R. Dorling,
Clare Goodess,
Phil D. Jones:
Statistical downscaling with artificial neural networks.
ESANN 2003: 167-172 |
18 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Robert J. Foxall,
Stephen R. Dorling,
Danilo P. Mandic:
Approximately unbiased estimation of conditional variance in heteroscedastic kernel ridge regression.
ESANN 2003: 209-214 |
17 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient cross-validation of kernel fisher discriminant classifiers.
ESANN 2003: 241-246 |
16 | EE | Barry Theobald,
Silko Kruse,
J. Andrew Bangham,
Gavin C. Cawley:
Towards a low bandwidth talking face using appearance models.
Image Vision Comput. 21(13-14): 1117-1124 (2003) |
15 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers.
Pattern Recognition 36(11): 2585-2592 (2003) |
2002 |
14 | EE | Alison Bosson,
Gavin C. Cawley,
Yi Chan,
Richard Harvey:
Non-retrieval: Blocking Pornographic Images.
CIVR 2002: 50-60 |
13 | | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient formation of a basis in a kernel induced feature space.
ESANN 2002: 1-6 |
12 | | Kamel Saadi,
Gavin C. Cawley,
Nicola L. C. Talbot:
Fast exact leave-one-out cross-validation of least-squares Support Vector Machines.
ESANN 2002: 149-154 |
11 | | Robert J. Foxall,
Gavin C. Cawley,
Nicola L. C. Talbot,
Stephen R. Dorling,
Danilo P. Mandic:
Heteroscedastic regularised kernel regression for prediction of episodes of poor air quality.
ESANN 2002: 19-24 |
10 | EE | Robert J. Foxall,
Gavin C. Cawley,
Stephen R. Dorling,
Danilo P. Mandic:
Error Functions for Prediction of Episodes of Poor Air Quality.
ICANN 2002: 1031-1036 |
9 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
A Greedy Training Algorithm for Sparse Least-Squares Support Vector Machines.
ICANN 2002: 681-686 |
8 | | Gavin C. Cawley,
Nicola L. C. Talbot:
Reduced Rank Kernel Ridge Regression.
Neural Processing Letters 16(3): 293-302 (2002) |
7 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Improved sparse least-squares support vector machines.
Neurocomputing 48(1-4): 1025-1031 (2002) |
2001 |
6 | EE | Barry Theobald,
Gavin C. Cawley,
Silko Kruse,
J. Andrew Bangham:
Towards a low bandwidth talking face using appearance models.
BMVC 2001 |
5 | EE | Olli Yli-Harja,
Pertti Koivisto,
J. Andrew Bangham,
Gavin C. Cawley,
Richard Harvey,
Ilya Shmulevich:
Simplified implementation of the recursive median sieve.
Signal Processing 81(7): 1565-1570 (2001) |
2000 |
4 | | Gavin C. Cawley:
On a Fast, Compact Approximation of the Exponential Function.
Neural Computation 12(9): 2009-2012 (2000) |
1998 |
3 | EE | J. Andrew Bangham,
J. R. Hidalgo,
Richard Harvey,
Gavin C. Cawley:
The Segmentation of Images via Scale-Space Trees.
BMVC 1998 |
1997 |
2 | EE | Nicola L. C. Talbot,
Gavin C. Cawley:
A Fast Index Assignment Method for Robust Vector Quantization of Image Data.
ICIP (3) 1997: 674-677 |
1996 |
1 | | Gavin C. Cawley,
Stephen R. Dorling:
Reproducing a Subjective Classification Scheme for Atmospheric Circulation Patterns over the United Kingdom Using a Neural Network.
ICANN 1996: 281-286 |