2007 |
25 | EE | Gavin C. Cawley,
Gareth J. Janacek,
Nicola L. C. Talbot:
Generalised Kernel Machines.
IJCNN 2007: 1720-1725 |
24 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Agnostic Learning versus Prior Knowledge in the Design of Kernel Machines.
IJCNN 2007: 1732-1737 |
23 | EE | Kamel Saadi,
Nicola L. C. Talbot,
Gavin C. Cawley:
Optimally regularised kernel Fisher discriminant classification.
Neural Networks 20(7): 832-841 (2007) |
2006 |
22 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Mark Girolami:
Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation.
NIPS 2006: 209-216 |
21 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
Bioinformatics 22(19): 2348-2355 (2006) |
20 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Gareth J. Janacek,
Mike W. Peck:
Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens.
IEEE Transactions on Neural Networks 17(2): 471-481 (2006) |
2005 |
19 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Olivier Chapelle:
Estimating Predictive Variances with Kernel Ridge Regression.
MLCW 2005: 56-77 |
18 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Constructing Bayesian formulations of sparse kernel learning methods.
Neural Networks 18(5-6): 674-683 (2005) |
17 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
The evidence framework applied to sparse kernel logistic regression.
Neurocomputing 64: 119-135 (2005) |
2004 |
16 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Gareth J. Janacek,
Michael Peck:
Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis.
Deterministic and Statistical Methods in Machine Learning 2004: 37-55 |
15 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Sparse Bayesian kernel logistic regression.
ESANN 2004: 133-138 |
14 | EE | Kamel Saadi,
Nicola L. C. Talbot,
Gavin C. Cawley:
Optimally Regularised Kernel Fisher Discriminant Analysis.
ICPR (2) 2004: 427-430 |
13 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient Model Selection for Kernel Logistic Regression.
ICPR (2) 2004: 439-442 |
12 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines.
Neural Networks 17(10): 1467-1475 (2004) |
11 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Robert J. Foxall,
Stephen R. Dorling,
Danilo P. Mandic:
Heteroscedastic kernel ridge regression.
Neurocomputing 57: 105-124 (2004) |
2003 |
10 | EE | Gavin C. Cawley,
Nicola L. C. Talbot,
Robert J. Foxall,
Stephen R. Dorling,
Danilo P. Mandic:
Approximately unbiased estimation of conditional variance in heteroscedastic kernel ridge regression.
ESANN 2003: 209-214 |
9 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient cross-validation of kernel fisher discriminant classifiers.
ESANN 2003: 241-246 |
8 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers.
Pattern Recognition 36(11): 2585-2592 (2003) |
2002 |
7 | | Gavin C. Cawley,
Nicola L. C. Talbot:
Efficient formation of a basis in a kernel induced feature space.
ESANN 2002: 1-6 |
6 | | Kamel Saadi,
Gavin C. Cawley,
Nicola L. C. Talbot:
Fast exact leave-one-out cross-validation of least-squares Support Vector Machines.
ESANN 2002: 149-154 |
5 | | Robert J. Foxall,
Gavin C. Cawley,
Nicola L. C. Talbot,
Stephen R. Dorling,
Danilo P. Mandic:
Heteroscedastic regularised kernel regression for prediction of episodes of poor air quality.
ESANN 2002: 19-24 |
4 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
A Greedy Training Algorithm for Sparse Least-Squares Support Vector Machines.
ICANN 2002: 681-686 |
3 | | Gavin C. Cawley,
Nicola L. C. Talbot:
Reduced Rank Kernel Ridge Regression.
Neural Processing Letters 16(3): 293-302 (2002) |
2 | EE | Gavin C. Cawley,
Nicola L. C. Talbot:
Improved sparse least-squares support vector machines.
Neurocomputing 48(1-4): 1025-1031 (2002) |
1997 |
1 | EE | Nicola L. C. Talbot,
Gavin C. Cawley:
A Fast Index Assignment Method for Robust Vector Quantization of Image Data.
ICIP (3) 1997: 674-677 |