2008 | ||
---|---|---|
62 | EE | Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, John D. Owens: Efficient computation of sum-products on GPUs through software-managed cache. ICS 2008: 309-318 |
61 | EE | Sivan Bercovici, Dan Geiger, Liran Shlush, Karl Skorecki, Alan Templeton: Panel Construction for Mapping in Admixed Populations Via Expected Mutual Information. RECOMB 2008: 435-449 |
60 | EE | Ydo Wexler, Dan Geiger: Variational Upper and Lower Bounds for Probabilistic Graphical Models. Journal of Computational Biology 15(7): 721-735 (2008) |
2007 | ||
59 | EE | Ydo Wexler, Dan Geiger: Variational Upper Bounds for Probabilistic Phylogenetic Models. RECOMB 2007: 226-237 |
58 | EE | Ron Zohar, Dan Geiger: Estimation of flows in flow networks. European Journal of Operational Research 176(2): 691-706 (2007) |
2006 | ||
57 | EE | Mark Silberstein, Dan Geiger, Assaf Schuster: A Distributed System for Genetic Linkage Analysis. GCCB 2006: 110-123 |
56 | EE | Mark Silberstein, Dan Geiger, Assaf Schuster, Miron Livny: Scheduling Mixed Workloads in Multi-grids: The Grid Execution Hierarchy. HPDC 2006: 291-302 |
55 | EE | Dan Geiger, Christopher Meek, Ydo Wexler: A Variational Inference Procedure Allowing Internal Structure for Overlapping Clusters and Deterministic Constraints. J. Artif. Intell. Res. (JAIR) 27: 1-23 (2006) |
2005 | ||
54 | EE | Ydo Wexler, Zohar Yakhini, Yechezkel Kashi, Dan Geiger: Finding Approximate Tandem Repeats in Genomic Sequences. Journal of Computational Biology 12(7): 928-942 (2005) |
53 | EE | Dmitry Rusakov, Dan Geiger: Asymptotic Model Selection for Naive Bayesian Networks. Journal of Machine Learning Research 6: 1-35 (2005) |
2004 | ||
52 | EE | Gideon Greenspan, Dan Geiger: High density linkage disequilibrium mapping using models of haplotype block variation. ISMB/ECCB (Supplement of Bioinformatics) 2004: 137-144 |
51 | EE | Vladimir Jojic, Nebojsa Jojic, Christopher Meek, Dan Geiger, Adam C. Siepel, David Haussler, David Heckerman: Efficient approximations for learning phylogenetic HMM models from data. ISMB/ECCB (Supplement of Bioinformatics) 2004: 161-168 |
50 | EE | Ydo Wexler, Zohar Yakhini, Yechezkel Kashi, Dan Geiger: Finding approximate tandem repeats in genomic sequences. RECOMB 2004: 223-232 |
49 | EE | Maáyan Fishelson, Dan Geiger: Optimizing Exact Genetic Linkage Computations. Journal of Computational Biology 11(2/3): 263-275 (2004) |
48 | EE | Gideon Greenspan, Dan Geiger: Model-Based Inference of Haplotype Block Variation. Journal of Computational Biology 11(2/3): 493-504 (2004) |
2003 | ||
47 | EE | Maáyan Fishelson, Dan Geiger: Optimizing exact genetic linkage computations. RECOMB 2003: 114-121 |
46 | EE | Gideon Greenspan, Dan Geiger: Model-based inference of haplotype block variation. RECOMB 2003: 131-137 |
45 | Ari Frank, Dan Geiger, Zohar Yakhini: A Distance-Based Branch and Bound Feature Selection Algorithm. UAI 2003: 241-248 | |
44 | Dmitry Rusakov, Dan Geiger: Automated Analytic Asymptotic Evaluation of the Marginal Likelihood for Latent Models. UAI 2003: 501-508 | |
2002 | ||
43 | Maáyan Fishelson, Dan Geiger: Exact genetic linkage computations for general pedigrees. ISMB 2002: 189-198 | |
42 | Dan Geiger, Christopher Meek, Bernd Sturmfels: Factorization of Discrete Probability Distributions. UAI 2002: 162-169 | |
41 | Dmitry Rusakov, Dan Geiger: Asymptotic Model Selection for Naive Bayesian Networks. UAI 2002: 438-445 | |
2001 | ||
40 | EE | Ann Becker, Dan Geiger: A sufficiently fast algorithm for finding close to optimal clique trees. Artif. Intell. 125(1-2): 3-17 (2001) |
2000 | ||
39 | EE | Ann Becker, Dan Geiger, Christopher Meek: Perfect Tree-like Markovian Distributions. UAI 2000: 19-23 |
38 | EE | Nir Friedman, Dan Geiger, Noam Lotner: Likelihood Computations Using Value Abstraction. UAI 2000: 192-200 |
37 | EE | Ann Becker, Reuven Bar-Yehuda, Dan Geiger: Randomized Algorithms for the Loop Cutset Problem. J. Artif. Intell. Res. (JAIR) 12: 219-234 (2000) |
1999 | ||
36 | EE | Kristin P. Bennett, Usama M. Fayyad, Dan Geiger: Density-Based Indexing for Approximate Nearest-Neighbor Queries. KDD 1999: 233-243 |
35 | EE | Dan Geiger, James Cussens: Parameter Priors for Directed Acyclic Graphical Models and the Characteriration of Several Probability Distributions. UAI 1999: 216-225 |
34 | EE | Dan Geiger, Christopher Meek: Quantifier Elimination for Statistical Problems. UAI 1999: 226-235 |
33 | EE | Ann Becker, Reuven Bar-Yehuda, Dan Geiger: Random Algorithms for the Loop Cutset Problem. UAI 1999: 49-56 |
32 | EE | Laxmi Parida, Dan Geiger: Mass Estimation of DNA Molecules and Extraction of Ordered Restriction Maps in Optical Mapping Imagery. Algorithmica 25(2-3): 295-310 (1999) |
1998 | ||
31 | EE | Dan Geiger: Graphical Models and Exponential Families. UAI 1998: 156-165 |
30 | Dan Geiger, David Heckerman: Probabilistic relevance relations. IEEE Transactions on Systems, Man, and Cybernetics, Part A 28(1): 17-25 (1998) | |
29 | EE | Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, Ron M. Roth: Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference. SIAM J. Comput. 27(4): 942-959 (1998) |
1997 | ||
28 | Dan Geiger, Prakash P. Shenoy: UAI '97: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, August 1-3, 1997, Brown University, Providence, Rhode Island, USA Morgan Kaufmann 1997 | |
27 | Kirill Shoikhet, Dan Geiger: A Practical Algorithm for Finding Optimal Triangulations. AAAI/IAAI 1997: 185-190 | |
26 | Nir Friedman, Dan Geiger, Moisés Goldszmidt: Bayesian Network Classifiers. Machine Learning 29(2-3): 131-163 (1997) | |
1996 | ||
25 | EE | Dan Geiger, David Heckerman, Christopher Meek: Asymptotic Model Selection for Directed Networks with Hidden Variables. UAI 1996: 283-290 |
24 | EE | Ann Becker, Dan Geiger: A sufficiently fast algorithm for finding close to optimal junction trees. UAI 1996: 81-89 |
23 | EE | Dan Geiger, David Heckerman: Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets. Artif. Intell. 82(1-2): 45-74 (1996) |
22 | EE | Ann Becker, Dan Geiger: Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem. Artif. Intell. 83(1): 167-188 (1996) |
1995 | ||
21 | EE | Dan Geiger, David Heckerman: A Characterization of the Dirichlet Distribution with Application to Learning Bayesian Networks. UAI 1995: 196-207 |
20 | EE | David Heckerman, Dan Geiger: Learning Bayesian Networks: A Unification for Discrete and Gaussian Domains. UAI 1995: 274-284 |
19 | EE | David Maxwell Chickering, Dan Geiger, David Heckerman: On Finding a Cycle Basis with a Shortest Maximal Cycle. Inf. Process. Lett. 54(1): 55-58 (1995) |
18 | David Heckerman, Dan Geiger, David Maxwell Chickering: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 20(3): 197-243 (1995) | |
17 | EE | Amir Eliaz, Dan Geiger: Word-level recognition of small sets of hand-written words. Pattern Recognition Letters 16(10): 999-1009 (1995) |
1994 | ||
16 | David Heckerman, Dan Geiger, David Maxwell Chickering: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. KDD Workshop 1994: 85-96 | |
15 | Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, Ron M. Roth: Approximation Algorithms for the Vertex Feedback Set Problem with Applications to Constraint Satisfaction and Bayesian Inference. SODA 1994: 344-354 | |
14 | EE | Dan Geiger, David Heckerman: Learning Gaussian Networks. UAI 1994: 235-243 |
13 | EE | Dan Geiger, Azaria Paz, Judea Pearl: On Testing Whether an Embedded Bayesian Network Represents a Probability Model. UAI 1994: 244-252 |
12 | EE | David Heckerman, Dan Geiger, David Maxwell Chickering: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. UAI 1994: 293-301 |
11 | EE | Ann Becker, Dan Geiger: Approximation Algorithms for the Loop Cutset Problem. UAI 1994: 60-68 |
1993 | ||
10 | EE | Dan Geiger, David Heckerman: Inference Algorithms for Similarity Networks. UAI 1993: 326-334 |
1992 | ||
9 | EE | Dan Geiger: An Entropy-based Learning Algorithm of Bayesian Conditional Trees. UAI 1992: 92-97 |
1991 | ||
8 | Dan Geiger, Jeffrey A. Barnett: Optimal Satisficing Tree Searches. AAAI 1991: 441-445 | |
7 | EE | Dan Geiger, David Heckerman: Advances in Probabilistic Reasoning. UAI 1991: 118-126 |
6 | Dan Geiger, Azaria Paz, Judea Pearl: Axioms and Algorithms for Inferences Involving Probabilistic Independence Inf. Comput. 91(1): 128-141 (1991) | |
1990 | ||
5 | Dan Geiger, Azaria Paz, Judea Pearl: Learning Causal Trees from Dependence Information. AAAI 1990: 770-776 | |
4 | EE | Dan Geiger, David Heckerman: separable and transitive graphoids. UAI 1990: 65-76 |
3 | Dan Geiger, Judea Pearl: Logical and algorithmic properties of independence and their application to Bayesian networks. Ann. Math. Artif. Intell. 2: 165-178 (1990) | |
1989 | ||
2 | EE | Dan Geiger, Thomas Verma, Judea Pearl: d-Separation: From Theorems to Algorithms. UAI 1989: 139-148 |
1988 | ||
1 | EE | Dan Geiger, Judea Pearl: On the logic of causal models. UAI 1988: 3-14 |