2008 |
31 | EE | David Barber:
Clique Matrices for Statistical Graph Decomposition and Parameterising Restricted Positive Definite Matrices.
UAI 2008: 26-33 |
2007 |
30 | EE | Bertrand Mesot,
David Barber:
Switching Linear Dynamical Systems for Noise Robust Speech Recognition.
IEEE Transactions on Audio, Speech & Language Processing 15(6): 1850-1858 (2007) |
2006 |
29 | EE | Mike Perrow,
David Barber:
Tagging of name records for genealogical data browsing.
JCDL 2006: 316-325 |
28 | EE | David Barber,
Silvia Chiappa:
Unified Inference for Variational Bayesian Linear Gaussian State-Space Models.
NIPS 2006: 81-88 |
27 | EE | David Barber,
Bertrand Mesot:
A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems.
NIPS 2006: 89-96 |
26 | EE | David Barber:
Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems.
Journal of Machine Learning Research 7: 2515-2540 (2006) |
25 | EE | Jean-Pascal Pfister,
Taro Toyoizumi,
David Barber,
Wulfram Gerstner:
Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning.
Neural Computation 18(6): 1318-1348 (2006) |
24 | EE | Silvia Chiappa,
David Barber:
EEG classification using generative independent component analysis.
Neurocomputing 69(7-9): 769-777 (2006) |
2005 |
23 | EE | Silvia Chiappa,
David Barber:
generative independent component analysis for EEG classification.
ESANN 2005: 297-302 |
22 | EE | Jean-François Paiement,
Douglas Eck,
Samy Bengio,
David Barber:
A graphical model for chord progressions embedded in a psychoacoustic space.
ICML 2005: 641-648 |
21 | EE | Felix V. Agakov,
David Barber:
Kernelized Infomax Clustering.
NIPS 2005 |
20 | EE | Felix V. Agakov,
David Barber:
Auxiliary Variational Information Maximization for Dimensionality Reduction.
SLSFS 2005: 103-114 |
2004 |
19 | EE | Felix V. Agakov,
David Barber:
Variational Information Maximization for Neural Coding.
ICONIP 2004: 543-548 |
18 | EE | Felix V. Agakov,
David Barber:
An Auxiliary Variational Method.
ICONIP 2004: 561-566 |
2003 |
17 | EE | Felix V. Agakov,
David Barber:
Approximate Learning in Temporal Hidden Hopfield Models.
ICANN 2003: 107-114 |
16 | EE | Jean-Pascal Pfister,
David Barber,
Wulfram Gerstner:
Optimal Hebbian Learning: A Probabilistic Point of View.
ICANN 2003: 92-98 |
15 | EE | David Barber,
Felix V. Agakov:
The IM Algorithm: A Variational Approach to Information Maximization.
NIPS 2003 |
2002 |
14 | EE | David Barber:
Learning in Spiking Neural Assemblies.
NIPS 2002: 149-156 |
13 | EE | David Barber:
Dynamic Bayesian Networks with Deterministic Latent Tables.
NIPS 2002: 713-720 |
2001 |
12 | | Machiel Westerdijk,
David Barber,
Wim Wiegerinck:
Deterministic Generative Models for Fast Feature Discovery.
Data Min. Knowl. Discov. 5(4): 337-363 (2001) |
1999 |
11 | EE | David Barber,
Peter Sollich:
Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks.
NIPS 1999: 393-399 |
10 | EE | David Barber,
Piërre van de Laar:
Variational Cumulant Expansions for Intractable Distributions.
J. Artif. Intell. Res. (JAIR) 10: 435-455 (1999) |
1998 |
9 | EE | David Barber,
Wim Wiegerinck:
Tractable Variational Structures for Approximating Graphical Models.
NIPS 1998: 183-189 |
8 | EE | Christopher K. I. Williams,
David Barber:
Bayesian Classification With Gaussian Processes.
IEEE Trans. Pattern Anal. Mach. Intell. 20(12): 1342-1351 (1998) |
7 | | Peter Sollich,
David Barber:
Online Learning from Finite Training Sets and Robustness to Input Bias.
Neural Computation 10(8): 2201-2217 (1998) |
1997 |
6 | | David Barber,
Christopher M. Bishop:
Ensemble Learning for Multi-Layer Networks.
NIPS 1997 |
5 | | Peter Sollich,
David Barber:
On-line Learning from Finite Training Sets in Nonlinear Networks.
NIPS 1997 |
4 | | David Barber,
Bernhard Schottky:
Radial Basis Functions: A Bayesian Treatment.
NIPS 1997 |
1996 |
3 | EE | Peter Sollich,
David Barber:
Online Learning from Finite Training Sets: An Analytical Case Study.
NIPS 1996: 274-280 |
2 | EE | David Barber,
Christopher M. Bishop:
Bayesian Model Comparison by Monte Carlo Chaining.
NIPS 1996: 333-339 |
1 | EE | David Barber,
Christopher K. I. Williams:
Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo.
NIPS 1996: 340-346 |