David Barber

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

31EEDavid Barber: Clique Matrices for Statistical Graph Decomposition and Parameterising Restricted Positive Definite Matrices. UAI 2008: 26-33
30EEBertrand Mesot, David Barber: Switching Linear Dynamical Systems for Noise Robust Speech Recognition. IEEE Transactions on Audio, Speech & Language Processing 15(6): 1850-1858 (2007)
29EEMike Perrow, David Barber: Tagging of name records for genealogical data browsing. JCDL 2006: 316-325
28EEDavid Barber, Silvia Chiappa: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models. NIPS 2006: 81-88
27EEDavid Barber, Bertrand Mesot: A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems. NIPS 2006: 89-96
26EEDavid Barber: Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems. Journal of Machine Learning Research 7: 2515-2540 (2006)
25EEJean-Pascal Pfister, Taro Toyoizumi, David Barber, Wulfram Gerstner: Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning. Neural Computation 18(6): 1318-1348 (2006)
24EESilvia Chiappa, David Barber: EEG classification using generative independent component analysis. Neurocomputing 69(7-9): 769-777 (2006)
23EESilvia Chiappa, David Barber: generative independent component analysis for EEG classification. ESANN 2005: 297-302
22EEJean-François Paiement, Douglas Eck, Samy Bengio, David Barber: A graphical model for chord progressions embedded in a psychoacoustic space. ICML 2005: 641-648
21EEFelix V. Agakov, David Barber: Kernelized Infomax Clustering. NIPS 2005
20EEFelix V. Agakov, David Barber: Auxiliary Variational Information Maximization for Dimensionality Reduction. SLSFS 2005: 103-114
19EEFelix V. Agakov, David Barber: Variational Information Maximization for Neural Coding. ICONIP 2004: 543-548
18EEFelix V. Agakov, David Barber: An Auxiliary Variational Method. ICONIP 2004: 561-566
17EEFelix V. Agakov, David Barber: Approximate Learning in Temporal Hidden Hopfield Models. ICANN 2003: 107-114
16EEJean-Pascal Pfister, David Barber, Wulfram Gerstner: Optimal Hebbian Learning: A Probabilistic Point of View. ICANN 2003: 92-98
15EEDavid Barber, Felix V. Agakov: The IM Algorithm: A Variational Approach to Information Maximization. NIPS 2003
14EEDavid Barber: Learning in Spiking Neural Assemblies. NIPS 2002: 149-156
13EEDavid Barber: Dynamic Bayesian Networks with Deterministic Latent Tables. NIPS 2002: 713-720
12 Machiel Westerdijk, David Barber, Wim Wiegerinck: Deterministic Generative Models for Fast Feature Discovery. Data Min. Knowl. Discov. 5(4): 337-363 (2001)
11EEDavid Barber, Peter Sollich: Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks. NIPS 1999: 393-399
10EEDavid Barber, Piërre van de Laar: Variational Cumulant Expansions for Intractable Distributions. J. Artif. Intell. Res. (JAIR) 10: 435-455 (1999)
9EEDavid Barber, Wim Wiegerinck: Tractable Variational Structures for Approximating Graphical Models. NIPS 1998: 183-189
8EEChristopher K. I. Williams, David Barber: Bayesian Classification With Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 20(12): 1342-1351 (1998)
7 Peter Sollich, David Barber: Online Learning from Finite Training Sets and Robustness to Input Bias. Neural Computation 10(8): 2201-2217 (1998)
6 David Barber, Christopher M. Bishop: Ensemble Learning for Multi-Layer Networks. NIPS 1997
5 Peter Sollich, David Barber: On-line Learning from Finite Training Sets in Nonlinear Networks. NIPS 1997
4 David Barber, Bernhard Schottky: Radial Basis Functions: A Bayesian Treatment. NIPS 1997
3EEPeter Sollich, David Barber: Online Learning from Finite Training Sets: An Analytical Case Study. NIPS 1996: 274-280
2EEDavid Barber, Christopher M. Bishop: Bayesian Model Comparison by Monte Carlo Chaining. NIPS 1996: 333-339
1EEDavid Barber, Christopher K. I. Williams: Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo. NIPS 1996: 340-346

Coauthor Index

1Felix V. Agakov [15] [17] [18] [19] [20] [21]
2Samy Bengio [22]
3Christopher M. Bishop [2] [6]
4Silvia Chiappa [23] [24] [28]
5Douglas Eck [22]
6Wulfram Gerstner [16] [25]
7Piërre van de Laar [10]
8Bertrand Mesot [27] [30]
9Jean-François Paiement [22]
10Mike Perrow [29]
11Jean-Pascal Pfister [16] [25]
12Bernhard Schottky [4]
13Peter Sollich [3] [5] [7] [11]
14Taro Toyoizumi [25]
15Machiel Westerdijk [12]
16Wim Wiegerinck [9] [12]
17Christopher K. I. Williams [1] [8]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)