2008 |
22 | EE | Kai Ni,
Anitha Kannan,
Antonio Criminisi,
John M. Winn:
Epitomic location recognition.
CVPR 2008 |
21 | EE | Tom Minka,
John M. Winn:
Gates.
NIPS 2008: 1073-1080 |
20 | EE | Oliver Stegle,
Anitha Kannan,
Richard Durbin,
John M. Winn:
Accounting for Non-genetic Factors Improves the Power of eQTL Studies.
RECOMB 2008: 411-422 |
2007 |
19 | EE | Derek Hoiem,
Carsten Rother,
John M. Winn:
3D LayoutCRF for Multi-View Object Class Recognition and Segmentation.
CVPR 2007 |
18 | EE | Julia A. Lasserre,
Anitha Kannan,
John M. Winn:
Hybrid learning of large jigsaws.
CVPR 2007 |
17 | EE | Thomas Deselaers,
Antonio Criminisi,
John M. Winn,
Ankur Agarwal:
Incorporating On-demand Stereo for Real Time Recognition.
CVPR 2007 |
16 | EE | Pei Yin,
Antonio Criminisi,
John M. Winn,
Irfan A. Essa:
Tree-based Classifiers for Bilayer Video Segmentation.
CVPR 2007 |
15 | EE | Jim C. Huang,
Anitha Kannan,
John M. Winn:
Bayesian association of haplotypes and non-genetic factors to regulatory and phenotypic variation in human populations.
ISMB/ECCB (Supplement of Bioinformatics) 2007: 212-221 |
14 | EE | Shahram Izadi,
Ankur Agarwal,
Antonio Criminisi,
John M. Winn,
Andrew Blake,
Andrew W. Fitzgibbon:
C-Slate: A Multi-Touch and Object Recognition System for Remote Collaboration using Horizontal Surfaces.
Tabletop 2007: 3-10 |
13 | EE | Jean-François Lalonde,
Derek Hoiem,
Alexei A. Efros,
Carsten Rother,
John M. Winn,
Antonio Criminisi:
Photo clip art.
ACM Trans. Graph. 26(3): 3 (2007) |
2006 |
12 | EE | Nebojsa Jojic,
John M. Winn,
Larry Zitnick:
Escaping local minima through hierarchical model selection: Automatic object discovery, segmentation, and tracking in video.
CVPR (1) 2006: 117-124 |
11 | EE | John M. Winn,
Jamie Shotton:
The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects.
CVPR (1) 2006: 37-44 |
10 | EE | Silvio Savarese,
John M. Winn,
Antonio Criminisi:
Discriminative Object Class Models of Appearance and Shape by Correlatons.
CVPR (2) 2006: 2033-2040 |
9 | EE | Jamie Shotton,
John M. Winn,
Carsten Rother,
Antonio Criminisi:
TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation.
ECCV (1) 2006: 1-15 |
8 | EE | Ashish Kapoor,
John M. Winn:
Located Hidden Random Fields: Learning Discriminative Parts for Object Detection.
ECCV (3) 2006: 302-315 |
7 | EE | Anitha Kannan,
John M. Winn,
Carsten Rother:
Clustering appearance and shape by learning jigsaws.
NIPS 2006: 657-664 |
2005 |
6 | EE | John M. Winn,
Antonio Criminisi,
Thomas P. Minka:
Object Categorization by Learned Universal Visual Dictionary.
ICCV 2005: 1800-1807 |
5 | EE | John M. Winn,
Nebojsa Jojic:
LOCUS: Learning Object Classes with Unsupervised Segmentation.
ICCV 2005: 756-763 |
4 | EE | John M. Winn,
Christopher M. Bishop:
Variational Message Passing.
Journal of Machine Learning Research 6: 661-694 (2005) |
2004 |
3 | EE | John M. Winn,
Andrew Blake:
Generative Affine Localisation and Tracking.
NIPS 2004 |
2002 |
2 | EE | Christopher M. Bishop,
David J. Spiegelhalter,
John M. Winn:
VIBES: A Variational Inference Engine for Bayesian Networks.
NIPS 2002: 777-784 |
2000 |
1 | EE | Christopher M. Bishop,
John M. Winn:
Non-linear Bayesian Image Modelling.
ECCV (1) 2000: 3-17 |