2009 |
90 | EE | Klaus Weihrauch,
Yongcheng Wu,
Decheng Ding:
Absolutely non-computable predicates and functions in analysis.
Mathematical Structures in Computer Science 19(1): 59-71 (2009) |
2008 |
89 | EE | Ruth Dillhage,
Tanja Grubba,
Andrea Sorbi,
Klaus Weihrauch,
Ning Zhong:
Preface.
Electr. Notes Theor. Comput. Sci. 202: 1-2 (2008) |
88 | EE | Tanja Grubba,
Klaus Weihrauch,
Yatao Xu:
Effectivity on Continuous Functions in Topological Spaces.
Electr. Notes Theor. Comput. Sci. 202: 237-254 (2008) |
87 | EE | Jack H. Lutz,
Klaus Weihrauch:
Connectivity Properties of Dimension Level Sets.
Electr. Notes Theor. Comput. Sci. 202: 295-304 (2008) |
86 | EE | Hong Lu,
Klaus Weihrauch:
Computable Riesz Representation for Locally Compact Hausdorff Spaces.
Electr. Notes Theor. Comput. Sci. 202: 3-12 (2008) |
85 | EE | Robert Rettinger,
Klaus Weihrauch,
Ning Zhong:
Complexity of Blowup Problems: Extended Abstract.
Electr. Notes Theor. Comput. Sci. 221: 219-230 (2008) |
84 | | Klaus Weihrauch:
The Computable Multi-Functions on Multi-represented Sets are Closed under Programming.
J. UCS 14(6): 801-844 (2008) |
83 | | Hong Lu,
Klaus Weihrauch:
Computable Riesz Representation for Locally Compact Hausdorff Spaces.
J. UCS 14(6): 845-860 (2008) |
82 | EE | Jack H. Lutz,
Klaus Weihrauch:
Connectivity properties of dimension level sets.
Math. Log. Q. 54(5): 483-491 (2008) |
2007 |
81 | EE | Decheng Ding,
Klaus Weihrauch,
Yongcheng Wu:
Absolutely Non-effective Predicates and Functions in Computable Analysis.
TAMC 2007: 595-604 |
80 | EE | Douglas Cenzer,
Ruth Dillhage,
Tanja Grubba,
Klaus Weihrauch:
Preface.
Electr. Notes Theor. Comput. Sci. 167: 1-2 (2007) |
79 | EE | Hong Lu,
Klaus Weihrauch:
Computable Riesz Representation for the Dual of C.
Electr. Notes Theor. Comput. Sci. 167: 157-177 (2007) |
78 | EE | Klaus Weihrauch,
Ning Zhong:
Computable Analysis of the Abstract Cauchy Problem in a Banach Space and Its Applications (I).
Electr. Notes Theor. Comput. Sci. 167: 33-59 (2007) |
77 | EE | Tanja Grubba,
Klaus Weihrauch:
On Computable Metrization.
Electr. Notes Theor. Comput. Sci. 167: 345-364 (2007) |
76 | EE | Ker-I Ko,
Klaus Weihrauch,
Xizhong Zheng:
Editorial: Math. Log. Quart. 4-5/2007.
Math. Log. Q. 53(4-5): 325 (2007) |
75 | EE | Tanja Grubba,
Matthias Schröder,
Klaus Weihrauch:
Computable metrization.
Math. Log. Q. 53(4-5): 381-395 (2007) |
74 | EE | Hong Lu,
Klaus Weihrauch:
Computable Riesz representation for the dual of C [0; 1].
Math. Log. Q. 53(4-5): 415-430 (2007) |
73 | EE | Klaus Weihrauch,
Ning Zhong:
Computable analysis of the abstract Cauchy problem in a Banach space and its applications I.
Math. Log. Q. 53(4-5): 511-531 (2007) |
2006 |
72 | EE | Klaus Weihrauch,
Ning Zhong:
Beyond the First Main Theorem - When Is the Solution of a Linear Cauchy Problem Computable?
TAMC 2006: 783-792 |
71 | EE | Klaus Weihrauch,
Ning Zhong:
Computing Schrödinger propagators on Type-2 Turing machines.
J. Complexity 22(6): 918-935 (2006) |
70 | EE | Klaus Weihrauch,
Ning Zhong:
An Algorithm for Computing Fundamental Solutions.
SIAM J. Comput. 35(6): 1283-1294 (2006) |
69 | EE | Yongcheng Wu,
Klaus Weihrauch:
A computable version of the Daniell-Stone theorem on integration and linear functionals.
Theor. Comput. Sci. 359(1-3): 28-42 (2006) |
2005 |
68 | | Tanja Grubba,
Peter Hertling,
Hideki Tsuiki,
Klaus Weihrauch:
CCA 2005 - Second International Conference on Computability and Complexity in Analysis, August 25-29, 2005, Kyoto, Japan
FernUniversität Hagen, Germany 2005 |
67 | | Tanja Grubba,
Klaus Weihrauch:
A Computable Version of Dini's Theorem for Topological Spaces.
CCA 2005: 117-129 |
66 | | Klaus Weihrauch:
Multi-Functions on Multi-Represented Sets are Closed under Flowchart Programming.
CCA 2005: 267-300 |
65 | EE | Klaus Weihrauch:
Computable Analysis.
CiE 2005: 530-531 |
64 | EE | Tanja Grubba,
Klaus Weihrauch:
A Computable Version of Dini's Theorem for Topological Spaces.
ISCIS 2005: 927-936 |
63 | EE | Vasco Brattka,
Ludwig Staiger,
Klaus Weihrauch:
Preface.
Electr. Notes Theor. Comput. Sci. 120: 1- (2005) |
62 | EE | Klaus Weihrauch,
Ning Zhong:
An Algorithm for Computing Fundamental Solutions.
Electr. Notes Theor. Comput. Sci. 120: 201-215 (2005) |
61 | EE | Yongcheng Wu,
Klaus Weihrauch:
A Computable Version of the Daniell-Stone Theorem on Integration and Linear Functionals.
Electr. Notes Theor. Comput. Sci. 120: 217-230 (2005) |
60 | EE | Klaus Weihrauch,
Ning Zhong:
Computing the solution of the Korteweg-de Vries equation with arbitrary precision on Turing.
Theor. Comput. Sci. 332(1-3): 337-366 (2005) |
2003 |
59 | EE | Robert Rettinger,
Klaus Weihrauch:
The computational complexity of some julia sets.
STOC 2003: 177-185 |
58 | EE | Peter Hertling,
Klaus Weihrauch:
Random elements in effective topological spaces with measure.
Inf. Comput. 181(1): 32-56 (2003) |
57 | EE | Ning Zhong,
Klaus Weihrauch:
Computatbility theory of generalized functions.
J. ACM 50(4): 469-505 (2003) |
56 | EE | Klaus Weihrauch:
Computational complexity on computable metric spaces.
Math. Log. Q. 49(1): 3-21 (2003) |
2002 |
55 | EE | Vasco Brattka,
Matthias Schröder,
Klaus Weihrauch:
Preface.
Electr. Notes Theor. Comput. Sci. 66(1): (2002) |
54 | EE | Robert Rettinger,
Klaus Weihrauch:
The Computational Complexity of Some Julia Sets.
Electr. Notes Theor. Comput. Sci. 66(1): (2002) |
53 | EE | Klaus Weihrauch,
Ning Zhong:
The Solution Operator of the Korteweg-de Vries Equation is Computable.
Electr. Notes Theor. Comput. Sci. 66(1): (2002) |
52 | EE | Klaus Weihrauch:
Computational Complexity on Computable Metric Spaces
Electronic Colloquium on Computational Complexity (ECCC)(014): (2002) |
51 | EE | Ker-I Ko,
Anil Nerode,
Klaus Weihrauch:
Foreword.
Theor. Comput. Sci. 284(2): 197 (2002) |
2001 |
50 | EE | Klaus Weihrauch,
Ning Zhong:
Turing Computability of a Nonlinear Schrödinger Propagator.
COCOON 2001: 596-600 |
49 | EE | Xizhong Zheng,
Klaus Weihrauch:
The Arithmetical Hierarchy of Real Numbers.
Math. Log. Q. 47(1): 51-65 (2001) |
2000 |
48 | EE | Klaus Weihrauch:
On Computable Metric Spaces Tietze-Urysohn Extension Is Computable.
CCA 2000: 357-368 |
47 | EE | Klaus Weihrauch,
Ning Zhong:
Is the Linear Schrödinger Propagator Turing Computable?
CCA 2000: 369-377 |
46 | EE | Klaus Ambos-Spies,
Klaus Weihrauch,
Xizhong Zheng:
Weakly Computable Real Numbers.
J. Complexity 16(4): 676-690 (2000) |
45 | EE | Klaus Weihrauch,
Xizhong Zheng:
Computability on continuous, lower semi-continuous and upper semi-continuous real functions.
Theor. Comput. Sci. 234(1-2): 109-133 (2000) |
1999 |
44 | EE | Klaus Weihrauch,
Ning Zhong:
The Wave Propagator Is Turing Computable.
ICALP 1999: 697-707 |
43 | | Xizhong Zheng,
Klaus Weihrauch:
The Arithmetical Hierarchy of Real Numbers.
MFCS 1999: 23-33 |
42 | | Vasco Brattka,
Xizhong Zheng,
Klaus Weihrauch:
Approaches to Effective Semi-Continuity of Real Functions.
Math. Log. Q. 45: 481-496 (1999) |
41 | EE | Klaus Weihrauch:
Computability on the Probability Measureson the Borel Sets of the Unit Interval.
Theor. Comput. Sci. 219(1-2): 421-437 (1999) |
40 | EE | Klaus Weihrauch,
Xizhong Zheng:
Effectiveness of the Global Modulus of Continuity on Metric Spaces.
Theor. Comput. Sci. 219(1-2): 439-450 (1999) |
39 | EE | Vasco Brattka,
Klaus Weihrauch:
Computability on Subsets of Euclidean Space I: Closed and Compact Subsets.
Theor. Comput. Sci. 219(1-2): 65-93 (1999) |
1998 |
38 | EE | Vasco Brattka,
Klaus Weihrauch,
Xizhong Zheng:
Approaches to Effective Semi-continuity of Real Functions.
COCOON 1998: 184-193 |
37 | EE | Peter Hertling,
Klaus Weihrauch:
Randomness Spaces.
ICALP 1998: 796-807 |
36 | | Vasco Brattka,
Klaus Weihrauch:
Recursive and Recursively Enumerable Closed Subsets of Euclidean Space.
MCU (2) 1998: 215-234 |
35 | EE | Klaus Weihrauch,
Xizhong Zheng:
A Finite Hierarchy of the Recursively Enumerable Real Numbers.
MFCS 1998: 798-806 |
34 | EE | Klaus Weihrauch:
A Refined Model of Computation for Continuous Problems.
J. Complexity 14(1): 102-121 (1998) |
1997 |
33 | | Klaus Weihrauch,
Xizhong Zheng:
Computability on Continuou, Lower Semi-continuous and Upper Semi-continuous Real Functions.
COCOON 1997: 166-175 |
32 | | Klaus Weihrauch,
Xizhong Zheng:
Effectiveness of the Global Modulus of Continuity on Metric Spaces.
Category Theory and Computer Science 1997: 210-219 |
31 | EE | Klaus Weihrauch:
A Foundation for Computable Analysis.
Foundations of Computer Science: Potential - Theory - Cognition 1997: 185-199 |
30 | | Klaus Weihrauch:
Computability on the Probability Measures on the Borel Sets of the Unit Interval.
ICALP 1997: 166-176 |
29 | | Klaus Weihrauch:
A Foundation for Computable Analysis.
SOFSEM 1997: 104-121 |
1996 |
28 | EE | Klaus Weihrauch,
Xizhong Zheng:
Computability on Continuous, Lower Semi-Continuous and Upper Semi-Continuous Real Functions.
CCA 1996 |
27 | EE | Klaus Weihrauch:
Computability on the probability measures on the Borel sets of the unit interval.
CCA 1996 |
26 | EE | Ker-I Ko,
Klaus Weihrauch:
On the Measure of Two-Dimensional Regions with Polynomial-Time computables Boundaries.
IEEE Conference on Computational Complexity 1996: 150-159 |
1995 |
25 | | Klaus Weihrauch:
A Foundation of Computable Analysis.
Bulletin of the EATCS 57: (1995) |
1994 |
24 | | Peter Hertling,
Klaus Weihrauch:
Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms.
CCCG 1994: 237-242 |
1993 |
23 | | Klaus Weihrauch:
Computability on Computable Metric Spaces.
Theor. Comput. Sci. 113(1): 191-210 (1993) |
1991 |
22 | | Klaus Weihrauch:
A Simple and Powerful Approach for Studying Constructivity, Computability, and Complexity.
Constructivity in Computer Science 1991: 228-246 |
21 | EE | Klaus Weihrauch:
On the complexity of online computations of real functions.
J. Complexity 7(4): 380-394 (1991) |
20 | | Klaus Weihrauch,
Christoph Kreitz:
Type 2 Computational Complexity of Functions on Cantor's Space.
Theor. Comput. Sci. 82(1): 1-18 (1991) |
1989 |
19 | | Klaus Weihrauch:
Constructivity, Computability, and Computational Complexity in Analysis.
FCT 1989: 480-493 |
1985 |
18 | | Klaus Weihrauch:
Type 2 Recursion Theory.
Theor. Comput. Sci. 38: 17-33 (1985) |
17 | | Christoph Kreitz,
Klaus Weihrauch:
Theory of Representations.
Theor. Comput. Sci. 38: 35-53 (1985) |
1983 |
16 | | Christoph Kreitz,
Klaus Weihrauch:
Complexity theory on real numbers and functions.
Theoretical Computer Science 1983: 165-174 |
15 | | Klaus Weihrauch,
Gisela Schäfer:
Admissible Representations of Effective CPO's.
Theor. Comput. Sci. 26: 131-147 (1983) |
1981 |
14 | | Klaus Weihrauch,
Gisela Schäfer:
Admissible Representations of Effective CPO's.
MFCS 1981: 544-553 |
13 | | Klaus Weihrauch:
Recursion and Complexity Theory on CPO-S.
Theoretical Computer Science 1981: 195-202 |
12 | | Klaus Weihrauch,
Ulrich Schreiber:
Embedding Metric Spaces Into CPO's.
Theor. Comput. Sci. 16: 5-24 (1981) |
1980 |
11 | | Angelika Reiser,
Klaus Weihrauch:
Natural Numberings and Generalized Computability.
Elektronische Informationsverarbeitung und Kybernetik 16(1-3): 11-20 (1980) |
1979 |
10 | | Klaus Weihrauch:
Theoretical Computer Science, 4th GI-Conference, Aachen, Germany, March 26-28, 1979, Proceedings
Springer 1979 |
1978 |
9 | | Rutger Verbeek,
Klaus Weihrauch:
Data Representation and Computational Complexity.
Theor. Comput. Sci. 7: 99-116 (1978) |
1977 |
8 | | Klaus Weihrauch:
A Genralized Computability Thesis.
FCT 1977: 538-542 |
7 | | Klaus Weihrauch:
A Generalized Computability Thesis (Abstract).
MFCS 1977: 570 |
1976 |
6 | | Rutger Verbeek,
Klaus Weihrauch:
The Influence of the Data Presentation on the Computational POwer of Machines.
MFCS 1976: 551-558 |
5 | | Klaus Weihrauch:
The Computational Complexity of Program Schemata.
J. Comput. Syst. Sci. 12(1): 80-107 (1976) |
1975 |
4 | | Klaus Weihrauch:
Program Schemata with Polynomial Bounded Counters.
Inf. Process. Lett. 3(3): 91-96 (1975) |
1974 |
3 | | Klaus Weihrauch:
The Compuational Complexity of Program Schemata.
ICALP 1974: 326-334 |
1973 |
2 | | G. Rose,
Klaus Weihrauch:
A characterization of the classes L1 and R1 of primitive recursive wordfunctions.
Automatentheorie und Formale Sprachen 1973: 263-266 |
1972 |
1 | | Friedrich W. von Henke,
Klaus Indermark,
Klaus Weihrauch:
Hierarchies of Primitive Recursive Wordfunctions and Transductions Defined by Automata.
ICALP 1972: 549-561 |