dblp.uni-trier.dewww.uni-trier.de

Robert Rettinger

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008
30EERobert Rettinger: On the Computability of Blochs Constant. Electr. Notes Theor. Comput. Sci. 202: 315-322 (2008)
29EERobert Rettinger: Lower Bounds on the Continuation of Holomorphic Functions. Electr. Notes Theor. Comput. Sci. 221: 207-217 (2008)
28EERobert Rettinger, Klaus Weihrauch, Ning Zhong: Complexity of Blowup Problems: Extended Abstract. Electr. Notes Theor. Comput. Sci. 221: 219-230 (2008)
27 Robert Rettinger: Bloch's Constant is Computable. J. UCS 14(6): 896-907 (2008)
2007
26EERobert Rettinger: Computable Riemann Surfaces. CiE 2007: 638-647
2006
25EERobert Rettinger, Xizhong Zheng: A hierarchy of Turing degrees of divergence bounded computable real numbers. J. Complexity 22(6): 818-826 (2006)
24EEXizhong Zheng, Robert Rettinger: A Reference Correction of "Effective Jordan Decomposition". Theory Comput. Syst. 39(2): 385-385 (2006)
2005
23 Robert Rettinger, Xizhong Zheng: A Hierarchy of Turing Degrees for Divergence Bounded Computable Real Numbers. CCA 2005: 199-209
22EERobert Rettinger, Xizhong Zheng: Solovay Reducibility on D-c.e Real Numbers. COCOON 2005: 359-368
21EERobert Rettinger, Xizhong Zheng: On the Turing Degrees of Divergence Bounded Computable Reals. CiE 2005: 418-428
20EERobert Rettinger: A Fast Algorithm for Julia Sets of Hyperbolic Rational Functions. Electr. Notes Theor. Comput. Sci. 120: 145-157 (2005)
19EEXizhong Zheng, Robert Rettinger: A Note On the Turing Degrees of Divergence Bounded Computable Reals. Electr. Notes Theor. Comput. Sci. 120: 231-237 (2005)
18EEXizhong Zheng, Robert Rettinger, George Barmpalias: h-monotonically computable real numbers. Math. Log. Q. 51(2): 157-170 (2005)
17EEXizhong Zheng, Robert Rettinger: Effective Jordan Decomposition. Theory Comput. Syst. 38(2): 189-209 (2005)
16EEXizhong Zheng, Robert Rettinger, Romain Gengler: Closure Properties of Real Number Classes under CBV Functions. Theory Comput. Syst. 38(6): 701-729 (2005)
2004
15EEXizhong Zheng, Robert Rettinger: On the Extensions of Solovay-Reducibility.. COCOON 2004: 360-369
14EEXizhong Zheng, Robert Rettinger: Weak computability and representation of reals. Math. Log. Q. 50(4-5): 431-442 (2004)
2003
13EEXizhong Zheng, Robert Rettinger, Romain Gengler: Ershov's Hierarchy of Real Numbers. MFCS 2003: 681-690
12EEXizhong Zheng, Robert Rettinger, Burchard von Braunmühl: On the Effective Jordan Decomposability. STACS 2003: 167-178
11EERobert Rettinger, Klaus Weihrauch: The computational complexity of some julia sets. STOC 2003: 177-185
10EERobert Rettinger, Xizhong Zheng: On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19(5): 672-691 (2003)
2002
9EERobert Rettinger, Xizhong Zheng: Burchard von Braunmühl, Computable Real Functions of Bounded Variation and Semi-computable Real Numbers. COCOON 2002: 47-56
8EEXizhong Zheng, Robert Rettinger, Burchard von Braunmühl: Effectively Absolute Continuity and Effective Jordan Decomposability. Electr. Notes Theor. Comput. Sci. 66(1): (2002)
7EERobert Rettinger, Klaus Weihrauch: The Computational Complexity of Some Julia Sets. Electr. Notes Theor. Comput. Sci. 66(1): (2002)
6EERobert Rettinger, Xizhong Zheng, Romain Gengler, Burchard von Braunmühl: Monotonically Computable Real Numbers. Math. Log. Q. 48(3): 459-479 (2002)
2001
5EERobert Rettinger, Xizhong Zheng, Romain Gengler, Burchard von Braunmühl: Weakly Computable Real Numbers and Total Computable Real Functions. COCOON 2001: 586-595
4EERobert Rettinger, Rutger Verbeek: Monte-Carlo Polynomial Versus Linear Time - The Truth-Table Case. FCT 2001: 311-322
3EERobert Rettinger, Xizhong Zheng: Hierarchy of Monotonically Computable Real Numbers. MFCS 2001: 633-644
1994
2 Burchard von Braunmühl, Romain Gengler, Robert Rettinger: The Alternation Hierarchy for Machines with Sublogarithmic Space is Infinite. STACS 1994: 85-96
1993
1 Burchard von Braunmühl, Romain Gengler, Robert Rettinger: The Alternation Hierarchy for Sublogarithmic Space is Infinite. Computational Complexity 3: 207-230 (1993)

Coauthor Index

1George Barmpalias [18]
2Burchard von Braunmühl [1] [2] [5] [6] [8] [12]
3Romain Gengler [1] [2] [5] [6] [13] [16]
4Rutger Verbeek [4]
5Klaus Weihrauch [7] [11] [28]
6Xizhong Zheng [3] [5] [6] [8] [9] [10] [12] [13] [14] [15] [16] [17] [18] [19] [21] [22] [23] [24] [25]
7Ning Zhong [28]

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)