2008 | ||
---|---|---|
71 | EE | Achim Rettinger, Matthias Nickles, Volker Tresp: A statistical relational model for trust learning. AAMAS (2) 2008: 763-770 |
70 | EE | Dieter Fensel, Frank van Harmelen, Bo Andersson, Paul Brennan, Hamish Cunningham, Emanuele Della Valle, Florian Fischer, Zhisheng Huang, Atanas Kiryakov, Tony Kyung-il Lee, Lael Schooler, Volker Tresp, Stefan Wesner, Michael Witbrock, Ning Zhong: Towards LarKC: A Platform for Web-Scale Reasoning. ICSC 2008: 524-529 |
69 | EE | Volker Tresp, Markus Bundschus, Achim Rettinger, Yi Huang: Towards Machine Learning on the Semantic Web. URSW (LNCS Vol.) 2008: 282-314 |
2007 | ||
68 | EE | Achim Rettinger, Matthias Nickles, Volker Tresp: Learning Initial Trust Among Interacting Agents. CIA 2007: 313-327 |
67 | EE | Anton Schwaighofer, Mathäus Dejori, Volker Tresp, Martin Stetter: Structure Learning with Nonparametric Decomposable Models. ICANN (1) 2007: 119-128 |
66 | EE | Shipeng Yu, Volker Tresp, Kai Yu: Robust multi-task learning with t-processes. ICML 2007: 1103-1110 |
65 | EE | Zhao Xu, Volker Tresp, Shipeng Yu, Kai Yu, Hans-Peter Kriegel: Fast Inference in Infinite Hidden Relational Models. MLG 2007 |
64 | EE | Ruxandra Lupas Scheiterer, Dragan Obradovic, Volker Tresp: Tailored-to-Fit Bayesian Network Modeling of Expert Diagnostic Knowledge. VLSI Signal Processing 49(2): 301-316 (2007) |
2006 | ||
63 | EE | Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel: Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures. ECML 2006: 841-848 |
62 | EE | Kai Yu, Jinbo Bi, Volker Tresp: Active learning via transductive experimental design. ICML 2006: 1081-1088 |
61 | EE | Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel: Collaborative ordinal regression. ICML 2006: 1089-1096 |
60 | EE | Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel, Mingrui Wu: Supervised probabilistic principal component analysis. KDD 2006: 464-473 |
59 | EE | Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, Zhao Xu: Stochastic Relational Models for Discriminative Link Prediction. NIPS 2006: 1553-1560 |
58 | EE | Zhao Xu, Volker Tresp, Kai Yu, Hans-Peter Kriegel: Infinite Hidden Relational Models. UAI 2006 |
57 | EE | Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel: Multi-Output Regularized Feature Projection. IEEE Trans. Knowl. Data Eng. 18(12): 1600-1613 (2006) |
2005 | ||
56 | EE | Kai Yu, Shipeng Yu, Volker Tresp: Multi-Output Regularized Projection. CVPR (2) 2005: 597-602 |
55 | EE | Yi Huang, Kai Yu, Matthias Schubert, Shipeng Yu, Volker Tresp, Hans-Peter Kriegel: Hierarchy-Regularized Latent Semantic Indexing. ICDM 2005: 178-185 |
54 | EE | Zhao Xu, Volker Tresp, Kai Yu, Shipeng Yu, Hans-Peter Kriegel: Dirichlet enhanced relational learning. ICML 2005: 1004-1011 |
53 | EE | Kai Yu, Volker Tresp, Anton Schwaighofer: Learning Gaussian processes from multiple tasks. ICML 2005: 1012-1019 |
52 | EE | Shipeng Yu, Kai Yu, Volker Tresp: Soft Clustering on Graphs. NIPS 2005 |
51 | EE | Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel: A Probabilistic Clustering-Projection Model for Discrete Data. PKDD 2005: 417-428 |
50 | EE | Kai Yu, Shipeng Yu, Volker Tresp: Multi-label informed latent semantic indexing. SIGIR 2005: 258-265 |
2004 | ||
49 | EE | Kai Yu, Volker Tresp: Heterogenous Data Fusion via a Probabilistic Latent-Variable Model. ARCS 2004: 20-30 |
48 | Kai Yu, Shipeng Yu, Volker Tresp: Dirichlet Enhanced Latent Semantic Analysis. LWA 2004: 221-226 | |
47 | EE | Anton Schwaighofer, Volker Tresp, Kai Yu: Learning Gaussian Process Kernels via Hierarchical Bayes. NIPS 2004 |
46 | EE | Kai Yu, Volker Tresp, Shipeng Yu: A nonparametric hierarchical bayesian framework for information filtering. SIGIR 2004: 353-360 |
45 | EE | Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, Hans-Peter Kriegel: Probabilistic Memory-Based Collaborative Filtering. IEEE Trans. Knowl. Data Eng. 16(1): 56-69 (2004) |
44 | EE | Michael Haft, Reimar Hofmann, Volker Tresp: Generative binary codes. Pattern Anal. Appl. 6(4): 269-284 (2004) |
2003 | ||
43 | EE | Kai Yu, Wei-Ying Ma, Volker Tresp, Zhao Xu, Xiaofei He, HongJiang Zhang, Hans-Peter Kriegel: Knowing a tree from the forest: art image retrieval using a society of profiles. ACM Multimedia 2003: 622-631 |
42 | EE | Zhao Xu, Xiaowei Xu, Kai Yu, Volker Tresp: A Hybrid Relevance-Feedback Approach to Text Retrieval. ECIR 2003: 281-293 |
41 | EE | Zhao Xu, Kai Yu, Volker Tresp, Xiaowei Xu, Jizhi Wang: Representative Sampling for Text Classification Using Support Vector Machines. ECIR 2003: 393-407 |
40 | EE | Volker Tresp, Kai Yu: An Introduction to Nonparametric Hierarchical Bayesian Modelling with a Focus on Multi-agent Learning. European Summer School on Multi-AgentControl 2003: 290-312 |
39 | EE | Anton Schwaighofer, Marian Grigoras, Volker Tresp, Clemens Hoffmann: GPPS: A Gaussian Process Positioning System for Cellular Networks. NIPS 2003 |
38 | Kai Yu, Anton Schwaighofer, Volker Tresp, Wei-Ying Ma, HongJiang Zhang: Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes. UAI 2003: 616-623 | |
2002 | ||
37 | EE | Kai Yu, Xiaowei Xu, Anton Schwaighofer, Volker Tresp, Hans-Peter Kriegel: Removing redundancy and inconsistency in memory-based collaborative filtering. CIKM 2002: 52-59 |
36 | EE | Anton Schwaighofer, Volker Tresp, Peter Mayer, Alexander K. Scheel, Gerhard Müller: The RA Scanner: Prediction of Rheumatoid Joint Inflammation Based on Laser Imaging. NIPS 2002: 1409-1416 |
35 | EE | Anton Schwaighofer, Volker Tresp: Transductive and Inductive Methods for Approximate Gaussian Process Regression. NIPS 2002: 953-960 |
2001 | ||
34 | Todd K. Leen, Thomas G. Dietterich, Volker Tresp: Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA MIT Press 2001 | |
33 | EE | Joachim Horn, Thomas Birkhölzer, Oliver Hogl, Marco Pellegrino, Ruxandra Scheiterer, Kai-Uwe Schmidt, Volker Tresp: Knowledge Acquisition and Automated Generation of Bayesian Networks for a Medical Dialogue and Advisory System. AIME 2001: 199-202 |
32 | EE | Volker Tresp, Anton Schwaighofer: Scalable Kernel Systems. ICANN 2001: 285-291 |
31 | EE | Anton Schwaighofer, Volker Tresp: The Bayesian Committee Support Vector Machine. ICANN 2001: 411-420 |
30 | Volker Tresp: Scaling Kernel-Based Systems to Large Data Sets. Data Min. Knowl. Discov. 5(3): 197-211 (2001) | |
2000 | ||
29 | EE | Volker Tresp: The generalized Bayesian committee machine. KDD 2000: 130-139 |
28 | Volker Tresp: Mixtures of Gaussian Processes. NIPS 2000: 654-660 | |
27 | Volker Tresp: A Bayesian Committee Machine. Neural Computation 12(11): 2719-2741 (2000) | |
1999 | ||
26 | EE | Thomas Briegel, Volker Tresp: Robust Neural Network Regression for Offline and Online Learning. NIPS 1999: 407-413 |
25 | EE | Volker Tresp, Michael Haft, Reimar Hofmann: Mixture Approximations to Bayesian Networks. UAI 1999: 639-646 |
24 | EE | Volker Tresp, Thomas Briegel, J. Moody: Neural-network models for the blood glucose metabolism of a diabetic. IEEE Transactions on Neural Networks 10(5): 1204-1213 (1999) |
1998 | ||
23 | EE | Thomas Briegel, Volker Tresp: Fisher Scoring and a Mixture of Modes Approach for Approximate Inference and Learning in Nonlinear State Space Models. NIPS 1998: 403-409 |
22 | EE | Jaakko Hollmén, Volker Tresp: Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model. NIPS 1998: 889-895 |
21 | EE | Dirk Ormoneit, Volker Tresp: Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates. IEEE Transactions on Neural Networks 9(4): 639-650 (1998) |
20 | Volker Tresp, Reimar Hofmann: Nonlinear Time-Series Prediction with Missing and Noisy Data. Neural Computation 10(3): 731-747 (1998) | |
1997 | ||
19 | Michiaki Taniguchi, Volker Tresp: Combining Regularized Neural Networks. ICANN 1997: 349-354 | |
18 | Volker Tresp, Thomas Briegel: A Solution for Missing Data in Recurrent Neural Networks with an Application to Blood Glucose Prediction. NIPS 1997 | |
17 | Reimar Hofmann, Volker Tresp: Nonlinear Markov Networks for Continuous Variables. NIPS 1997 | |
16 | Volker Tresp, Jürgen Hollatz, Subutai Ahmad: Representing Probabilistic Rules with Networks of Gaussian Basis Functions. Machine Learning 27(2): 173-200 (1997) | |
15 | EE | Michiaki Taniguchi, Volker Tresp: Averaging Regularized Estimators. Neural Computation 9(5): 1163-1178 (1997) |
1996 | ||
14 | EE | Volker Tresp, Ralph Neuneier, Hans-Georg Zimmermann: Early Brain Damage. NIPS 1996: 669-675 |
1995 | ||
13 | EE | Reimar Hofmann, Volker Tresp: Discovering Structure in Continuous Variables Using Bayesian Networks. NIPS 1995: 500-506 |
12 | EE | Dirk Ormoneit, Volker Tresp: Improved Gaussian Mixture Density Estimates Using Bayesian Penalty Terms and Network Averaging. NIPS 1995: 542-548 |
11 | Volker Tresp: Die besonderen Eigenschaften Neuronaler Netze bei der Approximation von Funktionen. KI 9(5): 12-17 (1995) | |
1994 | ||
10 | EE | Volker Tresp, Michiaki Taniguchi: Combining Estimators Using Non-Constant Weighting Functions. NIPS 1994: 419-426 |
9 | EE | Volker Tresp, Ralph Neuneier, Subutai Ahmad: Efficient Methods for Dealing with Missing Data in Supervised Learning. NIPS 1994: 689-696 |
1993 | ||
8 | EE | Volker Tresp, Subutai Ahmad, Ralph Neuneier: Training Neural Networks with Deficient Data. NIPS 1993: 128-135 |
1992 | ||
7 | Martin F. Schlang, Volker Tresp, Klaus Abraham-Fuchs, Wolfgang Härer, P. Weismüller: Neuronale Netze zur Segmentierung und Clusterung von biomagnetischen Signalen. DAGM-Symposium 1992: 180-185 | |
6 | Jürgen Hollatz, Volker Tresp: Integrating Rule-Based Knowledge into Neural Computing. DAGM-Symposium 1992: 88-95 | |
5 | EE | Subutai Ahmad, Volker Tresp: Some Solutions to the Missing Feature Problem in Vision. NIPS 1992: 393-400 |
4 | EE | Volker Tresp, Jürgen Hollatz, Subutai Ahmad: Network Structuring and Training Using Rule-Based Knowledge. NIPS 1992: 871-878 |
1991 | ||
3 | Volker Tresp: A Neural Architecture for 2D and 3D Vision. DAGM-Symposium 1991: 437-445 | |
2 | EE | Martin Röscheisen, Reimar Hofmann, Volker Tresp: Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency. NIPS 1991: 659-666 |
1990 | ||
1 | EE | Volker Tresp: A Neural Network Approach for Three-Dimensional Object Recognition. NIPS 1990: 306-312 |