2009 | ||
---|---|---|
109 | EE | Kenji Doya, Stephen Grossberg, John G. Taylor: New action editors join the journal! Five exciting special issues in the works! Neural Networks 22(1): 1 (2009) |
2008 | ||
108 | EE | Kenji Doya, Stephen Grossberg, John G. Taylor: Neural Networks goes electronic at twenty! Neural Networks 21(1): 1-2 (2008) |
2007 | ||
107 | EE | Nienke J. H. Korsten, Nickolaos F. Fragopanagos, John G. Taylor: Neural Substructures for Appraisal in Emotion: Self-esteem and Depression. ICANN (2) 2007: 850-858 |
106 | EE | John G. Taylor, Nickolaos F. Fragopanagos: Modelling the N2pc and Its Interaction with Value. ICANN (2) 2007: 879-888 |
105 | EE | Matthew Hartley, John G. Taylor: A Simple Model of Cortical Activations During Both Observation and Execution of Reach-to-Grasp Movements. ICANN (2) 2007: 899-911 |
104 | EE | Neill R. Taylor, John G. Taylor: A Novel Novelty Detector. ICANN (2) 2007: 973-983 |
103 | EE | Nicolas Tsapatsoulis, Stathis Kasderidis, John G. Taylor: An Attention-Based Architecture for Context Switch Detection. The Disappearing Computer 2007: 205-229 |
102 | EE | John G. Taylor: The Role of Attention in Creating a Cognitive System. WAPCV 2007: 21-41 |
101 | EE | Stephen Grossberg, Mitsuo Kawato, John G. Taylor: Editorial for 2007: Another year of exciting special issues! Neural Networks 20(1): 10-11 (2007) |
100 | EE | John G. Taylor: Commentary on the 'small network' argument. Neural Networks 20(9): 1059-1060 (2007) |
99 | EE | John G. Taylor, Walter J. Freeman, Alex Cleeremans: Introduction to the special issue on 'Brain and Consciousness'. Neural Networks 20(9): 929-931 (2007) |
98 | EE | John G. Taylor: CODAM: A neural network model of consciousness. Neural Networks 20(9): 983-992 (2007) |
97 | EE | John G. Taylor, Nickolaos F. Fragopanagos: Resolving some confusions over attention and consciousness. Neural Networks 20(9): 993-1003 (2007) |
96 | EE | John G. Taylor: CODAM model. Scholarpedia 2(11): 1598 (2007) |
2006 | ||
95 | EE | John G. Taylor: Machine Cognition and the EC Cognitive Systems Projects: Now and in the Future. ICANN (1) 2006: 535-542 |
94 | EE | John G. Taylor, Nickolaos F. Fragopanagos, Nienke J. H. Korsten: Modelling Working Memory Through Attentional Mechanisms. ICANN (1) 2006: 553-562 |
93 | EE | John G. Taylor, Stathis Kasderidis, Panos E. Trahanias, Matthew Hartley: A Basis for Cognitive Machines. ICANN (1) 2006: 573-582 |
92 | EE | Neill R. Taylor, Christo Panchev, Matthew Hartley, Stathis Kasderidis, John G. Taylor: Occlusion, Attention and Object Representations. ICANN (1) 2006: 592-601 |
91 | EE | John G. Taylor: Towards a Control Theory of Attention. ICANN (2) 2006: 461-470 |
90 | EE | Nickolaos F. Fragopanagos, Nienke J. H. Korsten, John G. Taylor: A neural model of the enhancement of perception caused by emotional cues. IJCNN 2006: 174-180 |
89 | EE | Neill R. Taylor, Matthew Hartley, John G. Taylor: The micro-structure of attention. Neural Networks 19(9): 1347-1370 (2006) |
88 | EE | Nienke J. H. Korsten, Nickolaos F. Fragopanagos, Matthew Hartley, Neill R. Taylor, John G. Taylor: Attention as a controller. Neural Networks 19(9): 1408-1421 (2006) |
87 | EE | Nickolaos F. Fragopanagos, John G. Taylor: Modelling the interaction of attention and emotion. Neurocomputing 69(16-18): 1977-1983 (2006) |
86 | EE | Matthew Hartley, Neill R. Taylor, John G. Taylor: Understanding spike-time-dependent plasticity: A biologically motivated computational model. Neurocomputing 69(16-18): 2005-2016 (2006) |
2005 | ||
85 | EE | Neill R. Taylor, Matthew Hartley, John G. Taylor: Coding of Objects in Low-Level Visual Cortical Areas. ICANN (1) 2005: 57-63 |
84 | EE | Stathis Kasderidis, John G. Taylor: Combining Attention and Value Maps. ICANN (1) 2005: 79-84 |
83 | EE | John G. Taylor: A Review of Cognitive Processing in the Brain. ICANN (1) 2005: 97-102 |
82 | EE | Roddy Cowie, Ellen Douglas-Cowie, John G. Taylor, Spiros Ioannou, Manolis Wallace, Stefanos D. Kollias: An intelligent system for facial emotion recognition. ICME 2005: 904-907 |
81 | EE | John G. Taylor: Jeff Hawkins and Sandra Blakeslee, On Intelligence, Times Books (2004). Artif. Intell. 169(2): 192-195 (2005) |
80 | EE | Stephen Grossberg, Mitsuo Kawato, John G. Taylor: A year of exciting Special Issues! Neural Networks 18(1): 13- (2005) |
79 | EE | John G. Taylor, Klaus R. Scherer, Roddy Cowie: Emotion and brain: Understanding emotions and modelling their recognition. Neural Networks 18(4): 313-316 (2005) |
78 | EE | John G. Taylor, Nickolaos F. Fragopanagos: The interaction of attention and emotion. Neural Networks 18(4): 353-369 (2005) |
77 | EE | Nickolaos F. Fragopanagos, John G. Taylor: Emotion recognition in human-computer interaction. Neural Networks 18(4): 389-405 (2005) |
76 | EE | Matthew Hartley, Neill R. Taylor, John G. Taylor: Subfield variations in hippocampal processing--components of a spatial navigation system. Neural Networks 18(5-6): 611-619 (2005) |
2004 | ||
75 | EE | Artur S. d'Avila Garcez, Dov M. Gabbay, Steffen Hölldobler, John G. Taylor: Journal of Applied Logic Special Volume on Neural-Symbolic Systems. J. Applied Logic 2(3): 241-243 (2004) |
74 | EE | Stathis Kasderidis, John G. Taylor: Attentional Agents and robot control. KES Journal 8(2): 69-89 (2004) |
73 | EE | Stephen Grossberg, Mitsuo Kawato, John G. Taylor: Another exciting year for the INNS/ENNS/JNNS journal! Neural Networks 17(1): 1 (2004) |
2003 | ||
72 | EE | Stavroula-Evita Fotinea, Stelios Bakamidis, Theologos Athanaselis, Ioannis Dologlou, George Carayannis, Roddy Cowie, Ellen Douglas-Cowie, Nickolaos F. Fragopanagos, John G. Taylor: Emotion in Speech: Towards an Integration of Linguistic, Paralinguistic, and Psychological Analysis. ICANN 2003: 1125-1132 |
71 | EE | John G. Taylor, Nickolaos F. Fragopanagos, Roddy Cowie, Ellen Douglas-Cowie, Stavroula-Evita Fotinea, Stefanos D. Kollias: An Emotional Recognition Architecture Based on Human Brain Structure. ICANN 2003: 1133-1142 |
70 | EE | Stathis Kasderidis, John G. Taylor, Nicolas Tsapatsoulis, Dario Malchiodi: Drawing Attention to the Dangerous. ICANN 2003: 909-916 |
69 | EE | John G. Taylor: The CODAM Model and Deficits of Consciousness I: CODAM. KES 2003: 1130-1139 |
68 | EE | John G. Taylor: CODAM and Deficits of Consciousness II: Schizophrenia and Neglect/Extinction. KES 2003: 1140-1148 |
67 | EE | John G. Taylor, Nickolaos F. Fragopanagos: ANNA: An Artificial Neural Network for Attention to Emotional Recognition. KES 2003: 607-614 |
66 | EE | Stathis Kasderidis, John G. Taylor: Attention-Based Robot Control. KES 2003: 615-621 |
65 | EE | Stephen Grossberg, Mitsuo Kawato, John G. Taylor: Celebrating the Year with a Special Issue for IJCNN'03. Neural Networks 16(1): 1 (2003) |
64 | EE | Winfried A. Fellenz, John G. Taylor: The hidden-layer model of hippocampus. Neurocomputing 50: 31-50 (2003) |
2002 | ||
63 | EE | Stephen Grossberg, Mitsuo Kawato, John G. Taylor: Editorial for 2002: A Time of Exuberant Development. Neural Networks 15(1): 1- (2002) |
62 | EE | John G. Taylor, M. Rogers: A control model of the movement of attention. Neural Networks 15(3): 309-326 (2002) |
61 | EE | Winfried A. Fellenz, John G. Taylor: Establishing retinotopy by lateral-inhibition type homogeneous neural fields. Neurocomputing 48(1-4): 313-322 (2002) |
2001 | ||
60 | EE | John G. Taylor: Images of the Mind: Brain Images and Neural Networks. Emergent Neural Computational Architectures Based on Neuroscience 2001: 20-38 |
59 | EE | Neill R. Taylor, John G. Taylor: Neural Nets for Short Movements in Natural Language Processing. ICANN 2001: 1205-1210 |
58 | EE | Nikolaos Ampazis, Stavros J. Perantonis, John G. Taylor: A dynamical model for the analysis and acceleration of learning in feedforward networks. Neural Networks 14(8): 1075-1088 (2001) |
2000 | ||
57 | EE | Winfried A. Fellenz, John G. Taylor: Establishing retinotopy by lateral-inhibition type homogeneous neural fields. ESANN 2000: 431-436 |
56 | EE | John G. Taylor: Towards Understanding Images of the Mind. IJCNN (1) 2000: 177-184 |
55 | EE | John G. Taylor: A General Framework for the Functions of the Brain. IJCNN (1) 2000: 35-40 |
54 | EE | John G. Taylor, Neill R. Taylor, Raju S. Bapi, Guido Bugmann, Daniel S. Levine: The Frontal Lobes and Executive Function. IJCNN (1) 2000: 41-46 |
53 | EE | Winfried A. Fellenz, John G. Taylor: The Hidden Layer Associative Memory Model of Hippocampus. IJCNN (2) 2000: 205-210 |
52 | EE | Neill R. Taylor, John G. Taylor: Is There More to TSSG than Associative Chaining (Chunking and All That)? IJCNN (2) 2000: 217-224 |
51 | EE | Bruno Apolloni, Christos Orovas, John G. Taylor, Winfried A. Fellenz, Stan C. A. M. Gielen, Machiel Westerdijk: A General Framework for Symbol and Rule Extraction in Neural Networks. IJCNN (2) 2000: 87-92 |
50 | EE | Winfried A. Fellenz, John G. Taylor, Roddy Cowie, Ellen Douglas-Cowie, Frédéric Piat, Stefanos D. Kollias, Christos Orovas, Bruno Apolloni: On Emotion Recognition of Faces and of Speech Using Neural Networks, Fuzzy Logic and the ASSESS System. IJCNN (2) 2000: 93-98 |
49 | EE | John G. Taylor, Neill R. Taylor, Bruno Apolloni, Christos Orovas: Constructing Symbols as Manipulable Structures by Recurrent Networks. IJCNN (2) 2000: 99-104 |
48 | EE | Chris Christodoulou, Trevor G. Clarkson, John G. Taylor, Guido Bugmann: Analysis of Fluctuation-Induced Firing in the Presence of Inhibition. IJCNN (3) 2000: 115-120 |
47 | John G. Taylor: Bringing AI and Soft Computing Together: A Neurobiological Perspective. Intelligent Systems and Soft Computing 2000: 41-71 | |
46 | EE | Neill R. Taylor, John G. Taylor: Hard-wired models of working memory and temporal sequence storage and generation. Neural Networks 13(2): 201-224 (2000) |
45 | EE | John G. Taylor, Barry Horwitz, Karl J. Friston: The global brain: imaging and modelling: Introduction: 2000 Special Issue. Neural Networks 13(8-9): 827- (2000) |
44 | EE | Barry Horwitz, Karl J. Friston, John G. Taylor: Neural modeling and functional brain imaging: an overview. Neural Networks 13(8-9): 829-846 (2000) |
43 | EE | Bernd J. Krause, John G. Taylor, Daniela Schmidt, Hubertus Hautzel, Felix M. Mottaghy, Hans-W. Müller-Gärtner: Imaging and neural modelling in episodic and working memory processes. Neural Networks 13(8-9): 847-859 (2000) |
42 | EE | John G. Taylor, Barry Horwitz, N. J. Shah, Winfried A. Fellenz, Hans-W. Müller-Gärtner, Bernd J. Krause: Decomposing memory: functional assignments and brain traffic in paired word associate learning. Neural Networks 13(8-9): 923-940 (2000) |
41 | EE | Oury Monchi, John G. Taylor, Alain Dagher: A neural model of working memory processes in normal subjects, Parkinson's disease and schizophrenia for fMRI design and predictions. Neural Networks 13(8-9): 953-973 (2000) |
1999 | ||
40 | John G. Taylor, Andreas A. Ioannides, Hans-W. Müller-Gärtner: Mathematical Analysis of Lead Field Expansions. IEEE Trans. Med. Imaging 18(2): 151-163 (1999) | |
39 | Oury Monchi, John G. Taylor: A Hard Wired Model of Coupled Frontal Working memories for various Tasks. Inf. Sci. 113(3-4): 221-243 (1999) | |
38 | Patrick May, Hannu Tiitinen, Risto J. Ilmoniemi, Göte Nyman, John G. Taylor, Risto Näätänen: Frequency Change Detection in Human Auditory Cortex. Journal of Computational Neuroscience 6(2): 99-120 (1999) | |
37 | EE | Nikolaos Ampazis, Stavros J. Perantonis, John G. Taylor: Dynamics of multilayer networks in the vicinity of temporary minima. Neural Networks 12(1): 43-58 (1999) |
36 | EE | John G. Taylor: Towards the networks of the brain: from brain imaging to consciousness. Neural Networks 12(7-8): 943-959 (1999) |
1998 | ||
35 | EE | Daniel Gembris, John G. Taylor, Stefan Schor, Dieter Suter, Stefan Posse: Funktionale Kernspintomographie: Sliding-Window Echtzeit Korrelationsanalyse. Bildverarbeitung für die Medizin 1998 |
34 | EE | Dirk Husmeier, John G. Taylor: Neural Networks for Predicting Conditional Probability Densities: Improved Training Scheme Combining EM and RVFL. Neural Networks 11(1): 89-116 (1998) |
1997 | ||
33 | Dirk Husmeier, John G. Taylor: Modeling Conditional Probabilities with Committees of RVFL Networks. ICANN 1997: 1053-1058 | |
32 | EE | Paulo J. L. Adeodato, John G. Taylor: Stability analysis of pRAM reinforcement learning. SBRN 1997: 41-50 |
31 | EE | Guido Bugmann, Chris Christodoulou, John G. Taylor: Role of Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron Model with Partial Reset. Neural Computation 9(5): 985-1000 (1997) |
30 | EE | Denise Gorse, Adrian J. Sheperd, John G. Taylor: The New ERA in Supervised Learning. Neural Networks 10(2): 343-352 (1997) |
29 | EE | Dirk Husmeier, John G. Taylor: Predicting Conditional Probability Densities of Stationary Stochastic Time Series. Neural Networks 10(3): 479-497 (1997) |
28 | EE | John G. Taylor, Hans-W. Müller-Gärtner: Non-Invasive Analysis of Awareness. Neural Networks 10(7): 1185-1194 (1997) |
27 | EE | John G. Taylor: Neural networks for consciousness. Neural Networks 10(7): 1207-1225 (1997) |
26 | EE | Bruno Apolloni, Diego de Falco, John G. Taylor: pRAM layout optimisation. Neural Networks 10(9): 1709-1716 (1997) |
25 | EE | Denise Gorse, David A. Romano-Critchley, John G. Taylor: A pulse-based reinforcement algorithm for learning continuous functions. Neurocomputing 14(4): 319-344 (1997) |
1996 | ||
24 | Paulo J. L. Adeodato, John G. Taylor: Autoassociative Memory with high Storage Capacity. ICANN 1996: 29-34 | |
23 | EE | Stephen Coombes, John G. Taylor: Using Features for the Storage of Patterns in a Fully Connected Net. Neural Networks 9(5): 837-844 (1996) |
22 | EE | Valeriu Beiu, John G. Taylor: On the Circuit Complexity of Sigmoid Feedforward Neural Networks. Neural Networks 9(7): 1155-1171 (1996) |
21 | EE | John G. Taylor: A competition for consciousness? Neurocomputing 11(2-4): 271-296 (1996) |
1995 | ||
20 | Y. Guan, Trevor G. Clarkson, John G. Taylor: Learning Transformed Prototypes (LTP) - A Statistical Pattern Classification Technique of Neural Networks. IWANN 1995: 441-447 | |
19 | Valeriu Beiu, John G. Taylor: Optimal Mapping of Neural Networks onto FPGA's - A New Constructive Algorithm -. IWANN 1995: 822-829 | |
18 | EE | Rasmus S. Petersen, John G. Taylor: Reorganisation of Somatosensory Cortex after Tactile Training. NIPS 1995: 82-88 |
17 | EE | Trevor G. Clarkson, John G. Taylor, Denise Gorse: Response to letter by K. Gurney. Neural Networks 8(3): 491- (1995) |
16 | EE | Sivasubramaniam Ramanan, Rasmus S. Petersen, Trevor G. Clarkson, John G. Taylor: pRAM nets for detection of small targets in sequences of infra-red images. Neural Networks 8(7-8): 1227-1237 (1995) |
1994 | ||
15 | EE | Y. Guan, Trevor G. Clarkson, John G. Taylor, Denise Gorse: Noisy reinforcement training for pRAM nets. Neural Networks 7(3): 523-528 (1994) |
14 | EE | Paul C. Bressloff, John G. Taylor: Dynamics of compartmental model neurons. Neural Networks 7(6-7): 1153-1165 (1994) |
13 | EE | John G. Taylor: Goals, drives, and consciousness. Neural Networks 7(6-7): 1181-1190 (1994) |
12 | EE | Stephen Grossberg, John G. Taylor: Introduction: 1994 Special issue. Neural Networks 7(6-7): 863- (1994) |
1993 | ||
11 | Chris Christodoulou, Guido Bugmann, Trevor G. Clarkson, John G. Taylor: The Temporal Noisy-Leaky Integrator Neuron with Additional Inhibitory Inputs. IWANN 1993: 465-470 | |
10 | EE | Stephen Grossberg, John G. Taylor: The fifth anniversary of neural networks. Neural Networks 6(1): 1 (1993) |
9 | EE | John G. Taylor, Stephen Coombes: Learning higher order correlations. Neural Networks 6(3): 423-427 (1993) |
8 | EE | Geoffrey J. Chappell, John G. Taylor: The temporal Kohönen map. Neural Networks 6(3): 441-445 (1993) |
1992 | ||
7 | Trevor G. Clarkson, Denise Gorse, John G. Taylor, C. K. Ng: Learning Probabilistic RAM Nets Using VLSI Structures. IEEE Trans. Computers 41(12): 1552-1561 (1992) | |
6 | EE | Shun-ichi Amari, Stephen Grossberg, John G. Taylor: Editorial. Neural Networks 5(1): 1- (1992) |
1991 | ||
5 | EE | John G. Taylor: Neural Network Capacity for Temporal Sequence Storage. Int. J. Neural Syst. 2(1-2): 47-54 (1991) |
4 | EE | Denise Gorse, John G. Taylor: A continuous input RAM-based stochastic neural model. Neural Networks 4(5): 657-665 (1991) |
3 | EE | Michael Reiss, John G. Taylor: Storing temporal sequences. Neural Networks 4(6): 773-787 (1991) |
2 | EE | Paul C. Bressloff, John G. Taylor: Discrete time leaky integrator network with synaptic noise. Neural Networks 4(6): 789-801 (1991) |
1990 | ||
1 | EE | John G. Taylor: A silicon model of vertebrate retinal processing. Neural Networks 3(2): 171-178 (1990) |