2005 |
53 | | Christoph Schmoeger,
Carsten Gips,
Fritz Wysotzki:
Spatial Inference with Constraints.
LWA 2005: 228-233 |
52 | EE | Peter Geibel,
Fritz Wysotzki:
Risk-Sensitive Reinforcement Learning Applied to Control under Constraints.
J. Artif. Intell. Res. (JAIR) 24: 81-108 (2005) |
51 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Solving inexact graph isomorphism problems using neural networks.
Neurocomputing 63: 45-67 (2005) |
50 | EE | Brijnesh J. Jain,
Peter Geibel,
Fritz Wysotzki:
SVM learning with the Schur-Hadamard inner product for graphs.
Neurocomputing 64: 93-105 (2005) |
2004 |
49 | EE | Peter Geibel,
Brijnesh J. Jain,
Fritz Wysotzki:
SVM learning with the SH inner product.
ESANN 2004: 299-304 |
48 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
The maximum weighted clique problem and Hopfield networks.
ESANN 2004: 331-336 |
47 | EE | Brijnesh J. Jain,
Peter Geibel,
Fritz Wysotzki:
Combining Recurrent Neural Networks and Support Vector Machines for Structural Pattern Recognition.
KI 2004: 241-255 |
46 | | Carsten Gips,
Fritz Wysotzki:
Spatial Inference - Application of Machine Learning Algorithms.
LWA 2004: 155-160 |
45 | | Brijnesh J. Jain,
Fritz Wysotzki:
Learning with Neural Networks in the Domain of Graphs.
LWA 2004: 163-170 |
44 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Structural Perceptrons for Attributed Graphs.
SSPR/SPR 2004: 85-94 |
43 | EE | Peter Geibel,
Fritz Wysotzki:
Learning Perceptrons and Piecewise Linear Classifiers Sensitive to Example Dependent Costs.
Appl. Intell. 21(1): 45-56 (2004) |
42 | EE | Peter Geibel,
Ulf Brefeld,
Fritz Wysotzki:
Perceptron and SVM learning with generalized cost models.
Intell. Data Anal. 8(5): 439-455 (2004) |
41 | EE | Stefan Bischoff,
Fritz Wysotzki:
Applied Connectionistic Methods to compare Segmented Images.
KI 18(1): 11- (2004) |
40 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Central Clustering of Attributed Graphs.
Machine Learning 56(1-3): 169-207 (2004) |
39 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Discrimination networks for maximum selection.
Neural Networks 17(1): 143-154 (2004) |
2003 |
38 | EE | Ulf Brefeld,
Peter Geibel,
Fritz Wysotzki:
Support Vector Machines with Example Dependent Costs.
ECML 2003: 23-34 |
37 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
An Associative Memory for the Automorphism Group of Structures.
ESANN 2003: 107-112 |
36 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
A Neural Graph Isomorphism Algorithm based on local Invariants.
ESANN 2003: 79-84 |
35 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
A Competitive Winner-Takes-All Architecture for Classification and Pattern Recognition of Structures.
GbRPR 2003: 259-270 |
34 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
A Novel Neural Network Approach to Solve Exact and Inexact Graph Isomorphism Problems.
ICANN 2003: 299-306 |
33 | | Peter Geibel,
Fritz Wysotzki:
Perceptron Based Learning with Example Dependent and Noisy Costs.
ICML 2003: 218-225 |
32 | EE | Peter Geibel,
Ulf Brefeld,
Fritz Wysotzki:
Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs.
IDA 2003: 167-178 |
31 | EE | Carsten Gips,
Fritz Wysotzki:
Spatial Inference - Combining Learning and Constraint Solving.
KI 2003: 282-296 |
30 | EE | Stefan Bischoff,
D. Reuss,
Fritz Wysotzki:
Applied Connectionistic Methods in Computer Vision to Compare Segmented Images.
KI 2003: 312-326 |
29 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
A k-Winner-Takes-All Classifier for Structured Data.
KI 2003: 342-354 |
28 | EE | Peter Geibel,
Kristina Schädler,
Fritz Wysotzki:
Connectionist construction of prototypes from decision trees for graph classification.
Intell. Data Anal. 7(2): 125-140 (2003) |
27 | | Brijnesh J. Jain,
Fritz Wysotzki:
Automorphism Partitioning with Neural Networks.
Neural Processing Letters 17(2): 205-215 (2003) |
2002 |
26 | EE | Emanuel Kitzelmann,
Ute Schmid,
Martin Mühlpfordt,
Fritz Wysotzki:
Inductive Synthesis of Functional Programs.
AISC 2002: 26-37 |
25 | EE | Ute Schmid,
Marina Müller,
Fritz Wysotzki:
Integrating Function Application in State-Based Planning.
KI 2002: 144-162 |
24 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Fast Winner-Takes-All Networks for the Maximum Clique Problem.
KI 2002: 163-173 |
23 | EE | Peter Geibel,
Kristina Schädler,
Fritz Wysotzki:
Learning of Class Descriptions from Class Discriminations: A Hybrid Approach for Relational Objects.
KI 2002: 186-204 |
22 | EE | Carsten Gips,
Petra Hofstedt,
Fritz Wysotzki:
Spatial Inference - Learning vs. Constraint Solving.
KI 2002: 299-316 |
2001 |
21 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
On the short-term-memory of WTA nets.
ESANN 2001: 289-294 |
20 | EE | Brijnesh J. Jain,
Fritz Wysotzki:
Efficient Pattern Discrimination with Inhibitory WTA Nets.
ICANN 2001: 827-834 |
2000 |
19 | | Ute Schmid,
Fritz Wysotzki:
Applying Inductive Program Synthesis to Macro Learning.
AIPS 2000: 371-378 |
18 | EE | Sylvia Wiebrock,
Lars Wittenburg,
Ute Schmid,
Fritz Wysotzki:
Inference and Visualization of Spatial Relations.
Spatial Cognition 2000: 212-224 |
17 | EE | Peter Geibel,
Fritz Wysotzki:
Graphbasierte Lernverfahren für relationale Daten.
Inform., Forsch. Entwickl. 15(1): 1-15 (2000) |
1999 |
16 | | Kristina Schädler,
Fritz Wysotzki:
Comparing Structures Using a Hopfield-Style Neural Network.
Appl. Intell. 11(1): 15-30 (1999) |
1998 |
15 | | Ute Schmid,
Fritz Wysotzki:
Induction of Recursive Program Schemes.
ECML 1998: 214-225 |
14 | EE | Kristina Schädler,
Fritz Wysotzki:
Application of a neural net in classification and knowledge discovery.
ESANN 1998: 117-122 |
13 | EE | Berry Claus,
Klaus Eyferth,
Carsten Gips,
Robin Hörnig,
Ute Schmid,
Sylvia Wiebrock,
Fritz Wysotzki:
Reference Frames for Spatial Inference in Text Understanding.
Spatial Cognition 1998: 241-266 |
1997 |
12 | EE | Kristina Schädler,
Fritz Wysotzki:
A Connectionist Approach to the Distance-Based Analysis of Relational Data.
IDA 1997: 137-148 |
11 | | Peter Geibel,
Fritz Wysotzki:
A Logical Framework for Graph Theoretical Decision Tree Learning.
ILP 1997: 173-180 |
10 | | Kristina Schädler,
Fritz Wysotzki:
A Connectionist Approach to Structural Simiarity Determination as a Basis of Clustering, Classification and Feature Detection.
PKDD 1997: 254-264 |
1996 |
9 | | Peter Geibel,
Fritz Wysotzki:
Relational Learning with Decision Trees.
ECAI 1996: 428-432 |
8 | | Peter Geibel,
Fritz Wysotzki:
Learning Relational Concepts with Decision Trees.
ICML 1996: 166-174 |
7 | | Tobias Scheffer,
Ralf Herbrich,
Fritz Wysotzki:
Efficient Theta-Subsumption Based on Graph Algorithms.
Inductive Logic Programming Workshop 1996: 212-228 |
1995 |
6 | | Wolfgang Müller,
Fritz Wysotzki:
Automatic Synthesis of Control Programs by Combination of Learning and Problem Solving Methods (Extended Abstract).
ECML 1995: 323-326 |
5 | | Christel Wisotzki,
Fritz Wysotzki:
Prototype, Nearest Neighbor and Hybrid Algorithms for Time Series Classification (Extended Abstract).
ECML 1995: 364-367 |
1994 |
4 | | Barbara Schulmeister,
Fritz Wysotzki:
The Piecewise Linear Classifier DIPOL92.
ECML 1994: 411-414 |
1986 |
3 | | Fritz Wysotzki:
Program Synthesis by Hierarchical Planning.
AIMSA 1986: 3-11 |
1983 |
2 | | Fritz Wysotzki:
Representation and Induction of Infinite Concepts and Recursive Action Sequences.
IJCAI 1983: 409-414 |
1981 |
1 | | Fritz Wysotzki,
Werner Kolbe,
Joachim Selbig:
Concept Learning by Structured Examples - An Algebraic Approach.
IJCAI 1981: 153-158 |