2007 |
12 | EE | Andrew Naish-Guzman,
Sean B. Holden:
Robust Regression with Twinned Gaussian Processes.
NIPS 2007 |
11 | EE | Andrew Naish-Guzman,
Sean B. Holden:
The Generalized FITC Approximation.
NIPS 2007 |
2005 |
10 | EE | Ulrich Paquet,
Sean B. Holden,
Andrew Naish-Guzman:
Bayesian Hierarchical Ordinal Regression.
ICANN (2) 2005: 267-272 |
9 | EE | Andrew Naish-Guzman,
Sean B. Holden,
Ulrich Paquet:
On the Explicit Use of Example Weights in the Construction of Classifiers.
ICANN (2) 2005: 307-312 |
2002 |
8 | EE | Robert Burbidge,
Matthew W. B. Trotter,
Bernard F. Buxton,
Sean B. Holden:
Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis.
Computers & Chemistry 26(1): 5-14 (2002) |
2001 |
7 | EE | Robert Burbidge,
Matthew W. B. Trotter,
Bernard F. Buxton,
Sean B. Holden:
STAR - Sparsity through Automated Rejection.
IWANN (1) 2001: 653-660 |
6 | EE | Jeevani Wickramaratna,
Sean B. Holden,
Bernard F. Buxton:
Performance Degradation in Boosting.
Multiple Classifier Systems 2001: 11-21 |
1998 |
5 | EE | Martin Anthony,
Sean B. Holden:
Cross-Validation for Binary Classification by Real-Valued Functions: Theoretical Analysis.
COLT 1998: 218-229 |
1997 |
4 | EE | Sean B. Holden,
Mahesan Niranjan:
Average-Case Learning Curves for Radial Basis Function Networks.
Neural Computation 9(2): 441-460 (1997) |
1996 |
3 | EE | Sean B. Holden:
PAC-Like Upper Bounds for the Sample Complexity of Leave-one-Out Cross-Validation.
COLT 1996: 41-50 |
1995 |
2 | EE | Sean B. Holden,
Mahesan Niranjan:
On the practical applicability of VC dimension bounds.
Neural Computation 7(6): 1265-1288 (1995) |
1993 |
1 | EE | Martin Anthony,
Sean B. Holden:
On the Power of Polynomial Discriminators and Radial Basis Function Networks.
COLT 1993: 158-164 |