2009 | ||
---|---|---|
41 | EE | Kai Labusch, Erhardt Barth, Thomas Martinetz: Sparse Coding Neural Gas: Learning of overcomplete data representations. Neurocomputing 72(7-9): 1547-1555 (2009) |
2008 | ||
40 | EE | Kai Labusch, Fabian Timm, Thomas Martinetz: Simple Incremental One-Class Support Vector Classification. DAGM-Symposium 2008: 21-30 |
39 | EE | Kai Labusch, Erhardt Barth, Thomas Martinetz: Learning Data Representations with Sparse Coding Neural Gas. ESANN 2008: 233-238 |
38 | EE | Martin Böhme, Michael Dorr, Mathis Graw, Thomas Martinetz, Erhardt Barth: A software framework for simulating eye trackers. ETRA 2008: 251-258 |
37 | EE | Sascha Klement, Amir Madany Mamlouk, Thomas Martinetz: Reliability of Cross-Validation for SVMs in High-Dimensional, Low Sample Size Scenarios. ICANN (1) 2008: 41-50 |
36 | EE | Kai Labusch, Erhardt Barth, Thomas Martinetz: Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources. ICANN (1) 2008: 788-797 |
35 | EE | Fabian Timm, Sascha Klement, Thomas Martinetz: Fast model selection for MaxMinOver-based training of support vector machines. ICPR 2008: 1-4 |
34 | EE | Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Uncertainty propagation for quality assurance in Reinforcement Learning. IJCNN 2008: 2588-2595 |
2007 | ||
33 | EE | Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Neural Rewards Regression for near-optimal policy identification in Markovian and partial observable environments. ESANN 2007: 301-306 |
32 | EE | Daniel Schneegaß, Anton Maximilian Schäfer, Thomas Martinetz: The Intrinsic Recurrent Support Vector Machine. ESANN 2007: 325-330 |
31 | EE | Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Explicit Kernel Rewards Regression for data-efficient near-optimal policy identification. ESANN 2007: 337-342 |
30 | EE | Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Improving Optimality of Neural Rewards Regression for Data-Efficient Batch Near-Optimal Policy Identification. ICANN (1) 2007: 109-118 |
2006 | ||
29 | Daniel Schneegaß, Steffen Udluft, Thomas Martinetz: Kernel Rewards Regression: An Information Efficient Batch Policy Iteration Approach. Artificial Intelligence and Applications 2006: 428-433 | |
28 | EE | Daniel Schneegaß, Thomas Martinetz, Michael Clausohm: OnlineDoubleMaxMinOver: a simple approximate time and information efficient online Support Vector Classification method. ESANN 2006: 575-580 |
27 | EE | Martin Böhme, Michael Dorr, Thomas Martinetz, Erhardt Barth: Gaze-contingent temporal filtering of video. ETRA 2006: 109-115 |
26 | EE | Daniel Schneegaß, Kai Labusch, Thomas Martinetz: MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation. ICANN (1) 2006: 150-158 |
25 | EE | Erhardt Barth, Michael Dorr, Martin Böhme, Karl R. Gegenfurtner, Thomas Martinetz: Guiding Eye Movements for Better Communication and Augmented Vision. PIT 2006: 1-8 |
24 | EE | Michael Dorr, Martin Böhme, Thomas Martinetz, Erhardt Barth: Gaze-Contingent Spatio-temporal Filtering in a Head-Mounted Display. PIT 2006: 205-207 |
23 | EE | André Meyer, Martin Böhme, Thomas Martinetz, Erhardt Barth: A Single-Camera Remote Eye Tracker. PIT 2006: 208-211 |
22 | EE | Thomas Martinetz, Amir Madany Mamlouk, Cicero Mota: Fast and Easy Computation of Approximate Smallest Enclosing Balls. SIBGRAPI 2006: 163-170 |
21 | EE | Martin Böhme, Michael Dorr, Christopher Krause, Thomas Martinetz, Erhardt Barth: Eye movement predictions on natural videos. Neurocomputing 69(16-18): 1996-2004 (2006) |
2005 | ||
20 | Uwe Brinkschulte, Jürgen Becker, Dietmar Fey, Christian Hochberger, Thomas Martinetz, Christian Müller-Schloer, Hartmut Schmeck, Theo Ungerer, Rolf P. Würtz: 18th International Conference on Architecture of Computing Systems, Workshops, Innsbruck, Austria, March 2005 VDE Verlag 2005 | |
19 | EE | Michael Dorr, Thomas Martinetz, Martin Böhme, Erhardt Barth: Visibility of temporal blur on a gaze-contingent display. APGV 2005: 33-36 |
18 | EE | Thomas Martinetz, Kai Labusch, Daniel Schneegaß: SoftDoubleMinOver: A Simple Procedure for Maximum Margin Classification. ICANN (2) 2005: 301-306 |
17 | EE | Amir Madany Mamlouk, Hannah Sharp, Kerstin M. L. Menne, Ulrich G. Hofmann, Thomas Martinetz: Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing 65-66: 275-282 (2005) |
2004 | ||
16 | EE | Thomas Martinetz: MinOver Revisited for Incremental Support-Vector-Classification. DAGM-Symposium 2004: 187-194 |
15 | Martin Böhme, Christopher Krause, Thomas Martinetz, Erhardt Barth: Saliency Extraction for Gaze-Contingent Displays. GI Jahrestagung (2) 2004: 646-650 | |
14 | EE | Jan T. Kim, Jan E. Gewehr, Thomas Martinetz: Binding Matrix: a Novel Approach for Binding Site Recognition. J. Bioinformatics and Computational Biology 2(2): 289-308 (2004) |
2003 | ||
13 | EE | Amir Madany Mamlouk, Jan T. Kim, Erhardt Barth, Michael Brauckmann, Thomas Martinetz: One-Class Classification with Subgaussians. DAGM-Symposium 2003: 346-353 |
12 | EE | Anke Meyer-Bäse, Thomas D. Otto, Thomas Martinetz, Dorothee Auer, Axel Wismüller: Model-Free Functional MRI Analysis Using Topographic Independent Component Analysis. ESANN 2003: 509-514 |
2001 | ||
11 | EE | Daniel Polani, Thomas Martinetz, Jan T. Kim: An Information-Theoretic Approach for the Quantification of Relevance. ECAL 2001: 704-713 |
10 | Jan T. Kim, Thomas Martinetz, Daniel Polani: On the Effects of Transcription Factor Properties on the Information Content of Binding Sites. German Conference on Bioinformatics 2001: 192-194 | |
9 | EE | Martin Haker, André Meyer, Daniel Polani, Thomas Martinetz: A Method for Incorporation of New Evidence to Improve World State Estimation. RoboCup 2001: 362-367 |
2000 | ||
8 | EE | Daniel Polani, Thomas Martinetz: Team Description for Lucky Lübeck - Evidence-Based World State Estimation. RoboCup 2000: 481-484 |
1999 | ||
7 | Claus O. Wilke, Christopher Ronnewinkel, Thomas Martinetz: Molecular Evolution in Time-Dependent Environments. ECAL 1999: 417-421 | |
6 | EE | Christopher Ronnewinkel, Claus O. Wilke, Thomas Martinetz: Genetic Algorithms in Time-Dependent Environments CoRR physics/9911006: (1999) |
1994 | ||
5 | Thomas Villmann, Ralf Der, J. Michael Herrmann, Thomas Martinetz: Topology Preservation in Self-Organizing Feature Maps: General Definition and Efficient Measurement. Fuzzy Days 1994: 159-166 | |
4 | EE | Thomas Martinetz, Klaus Schulten: Topology representing networks. Neural Networks 7(3): 507-522 (1994) |
1992 | ||
3 | Thomas Martinetz: Selbstorganisierende neuronale Netzwerkmodelle zur Bewegungssteuerung. Infix Verlag, St. Augustin, Germany 1992 | |
1991 | ||
2 | Stan Berkovitch, Philippe Dalger, Ted Hesselroth, Thomas Martinetz, Benoît Noël, Jörg A. Walter, Klaus Schulten: Vector Quantization Algorithm for Time Series Prediction and Visuo-Motor Control of Robots. Wissensbasierte Systeme 1991: 443-447 | |
1989 | ||
1 | EE | Helge Ritter, Thomas Martinetz, Klaus Schulten: Topology-conserving maps for learning visuo-motor-coordination. Neural Networks 2(3): 159-168 (1989) |