2008 |
22 | | Jonathan Dinerstein,
Parris K. Egbert,
Dan Ventura,
Michael A. Goodrich:
Data-Driven Programming and Behavior for Autonomous Virtual Characters.
AAAI 2008: 1450-1451 |
21 | | Robert Van Dam,
Irene Langkilde-Geary,
Dan Ventura:
Adapting ADtrees for High Arity Features.
AAAI 2008: 708-713 |
20 | EE | Adam Drake,
Eric K. Ringger,
Dan Ventura:
Sentiment Regression: Using Real-Valued Scores to Summarize Overall Document Sentiment.
ICSC 2008: 152-157 |
2007 |
19 | EE | Neil Toronto,
Bryan S. Morse,
Dan Ventura,
Kevin D. Seppi:
The Hough Transform's Implicit Bayesian Foundation.
ICIP (4) 2007: 377-380 |
18 | EE | Jonathan Dinerstein,
Parris K. Egbert,
Dan Ventura:
Learning Policies for Embodied Virtual Agents through Demonstration.
IJCAI 2007: 1257-1262 |
17 | EE | Nancy Fulda,
Dan Ventura:
Predicting and Preventing Coordination Problems in Cooperative Q-learning Systems.
IJCAI 2007: 780-785 |
16 | EE | Michael Gashler,
Dan Ventura,
Tony R. Martinez:
Iterative Non-linear Dimensionality Reduction with Manifold Sculpting.
NIPS 2007 |
15 | EE | Sabra Dinerstein,
Jonathan Dinerstein,
Dan Ventura:
Robust multi-modal biometric fusion via multiple SVMs.
SMC 2007: 1530-1535 |
14 | EE | Jared Lundell,
Dan Ventura:
A data-dependent distance measure for transductive instance-based learning.
SMC 2007: 2825-2830 |
13 | EE | Robert Van Dam,
Dan Ventura:
ADtrees for sequential data and n-gram Counting.
SMC 2007: 492-497 |
2006 |
12 | EE | Nancy Fulda,
Dan Ventura:
Learning a Rendezvous Task with Dynamic Joint Action Perception.
IJCNN 2006: 235-240 |
11 | EE | Eric Goodman,
Dan Ventura:
Spatiotemporal Pattern Recognition via Liquid State Machines.
IJCNN 2006: 3848-3853 |
10 | EE | David Norton,
Dan Ventura:
Preparing More Effective Liquid State Machines Using Hebbian Learning.
IJCNN 2006: 4243-4248 |
9 | EE | Kaivan Kamali,
Dan Ventura,
Amulya Garga,
Soundar R. T. Kumara:
Geometric Task Decomposition in a Multi-Agent Environment.
Applied Artificial Intelligence 20(5): 437-456 (2006) |
2005 |
8 | EE | Adam Drake,
Dan Ventura:
A practical generalization of Fourier-based learning.
ICML 2005: 185-192 |
2003 |
7 | | Nancy Fulda,
Dan Ventura:
Dynamic Joint Action Perception for Q-Learning Agents.
ICMLA 2003: 73-79 |
6 | EE | Bob Ricks,
Dan Ventura:
Training a Quantum Neural Network.
NIPS 2003 |
2002 |
5 | | H. John Caulfield,
Shu-Heng Chen,
Heng-Da Cheng,
Richard J. Duro,
Vasant Honavar,
Etienne E. Kerre,
Mi Lu,
Manuel Grana Romay,
Timothy K. Shih,
Dan Ventura,
Paul P. Wang,
Yuanyuan Yang:
Proceedings of the 6th Joint Conference on Information Science, March 8-13, 2002, Research Triangle Park, North Carolina, USA
JCIS / Association for Intelligent Machinery, Inc. 2002 |
4 | | Dan Ventura:
Pattern Classification Using a Quantum System.
JCIS 2002: 537-540 |
2000 |
3 | | Dan Ventura,
Tony R. Martinez:
Quantum associative memory.
Inf. Sci. 124(1-4): 273-296 (2000) |
2 | | Dan Ventura,
Subhash C. Kak:
Quantum computing and neural information processing.
Inf. Sci. 128(3-4): 147-148 (2000) |
1 | | A. A. Ezhov,
A. V. Nifanova,
Dan Ventura:
Quantum associative memory with distributed queries.
Inf. Sci. 128(3-4): 271-293 (2000) |