2008 | ||
---|---|---|
46 | EE | Jingu Kim, Haesun Park: Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons. ICDM 2008: 353-362 |
45 | EE | Haesun Park, Jaegul Choo, Barry L. Drake, Jinwoo Kang: Linear discriminant analysis for data with subcluster structure. ICPR 2008: 1-4 |
44 | EE | Cheong Hee Park, Haesun Park: A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition 41(3): 1083-1097 (2008) |
2007 | ||
43 | EE | Hyunsoo Kim, Haesun Park, Lars Eldén: Non-negative Tensor Factorization Based on Alternating Large-scale Non-negativity-constrained Least Squares. BIBE 2007: 1147-1151 |
42 | EE | Hyunsoo Kim, Haesun Park, Hongyuan Zha: Distance Preserving Dimension Reduction Using the QR Factorization or the Cholesky Factorization. BIBE 2007: 263-269 |
41 | EE | Jaegul Choo, Hyunsoo Kim, Haesun Park, Hongyuan Zha: A Comparison of Unsupervised Dimension Reduction Algorithms for Classification. BIBM 2007: 71-77 |
40 | EE | Hyunsoo Kim, Haesun Park: Cancer Class Discovery Using Non-negative Matrix Factorization Based on Alternating Non-negativity-Constrained Least Squares. ISBRA 2007: 477-487 |
39 | EE | Hyunsoo Kim, Haesun Park, Hongyuan Zha: Distance Preserving Dimension Reduction for Manifold Learning. SDM 2007 |
38 | EE | Hyunsoo Kim, Haesun Park: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12): 1495-1502 (2007) |
37 | EE | Sangwook Lee, Haesun Park, Moongu Jeon: Binary Particle Swarm Optimization with Bit Change Mutation. IEICE Transactions 90-A(10): 2253-2256 (2007) |
36 | EE | Hyunsoo Kim, Barry L. Drake, Haesun Park: Multiclass classifiers based on dimension reduction with generalized LDA. Pattern Recognition 40(11): 2939-2945 (2007) |
2006 | ||
35 | EE | Chris H. Q. Ding, Tao Li, Wei Peng, Haesun Park: Orthogonal nonnegative matrix t-factorizations for clustering. KDD 2006: 126-135 |
34 | EE | Hyunsoo Kim, Gene H. Golub, Haesun Park: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 22(11): 1410-1411 (2006) |
33 | EE | Jesse L. Barlow, Haesun Park, Patrick J. F. Groenen, Hongyuan Zha: 2nd Special issue on matrix computations and statistics. Computational Statistics & Data Analysis 50(1): 1-4 (2006) |
32 | EE | Jieping Ye, Ravi Janardan, Qi Li, Haesun Park: Feature Reduction via Generalized Uncorrelated Linear Discriminant Analysis. IEEE Trans. Knowl. Data Eng. 18(10): 1312-1322 (2006) |
31 | EE | Hyunsoo Kim, Barry L. Drake, Haesun Park: Adaptive Nonlinear Discriminant Analysis by Regularized Minimum Squared Errors. IEEE Trans. Knowl. Data Eng. 18(5): 603-612 (2006) |
30 | EE | Peg Howland, Jianlin Wang, Haesun Park: Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognition 39(2): 277-287 (2006) |
2005 | ||
29 | EE | Hyunsoo Kim, Gene H. Golub, Haesun Park: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2): 187-198 (2005) |
28 | EE | Jieping Ye, Qi Li, Hui Xiong, Haesun Park, Ravi Janardan, Vipin Kumar: IDR/QR: An Incremental Dimension Reduction Algorithm via QR Decomposition. IEEE Trans. Knowl. Data Eng. 17(9): 1208-1222 (2005) |
27 | EE | Hyunsoo Kim, Jeff X. Zhou, Herbert C. Morse III, Haesun Park: A three-stage framework for gene expression data analysis by L1-norm support vector regression. IJBRA 1(1): 51-62 (2005) |
26 | EE | Hyunsoo Kim, Peg Howland, Haesun Park: Dimension Reduction in Text Classification with Support Vector Machines. Journal of Machine Learning Research 6: 37-53 (2005) |
25 | EE | Cheong Hee Park, Haesun Park: Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis. Pattern Recognition 38(4): 495-503 (2005) |
2004 | ||
24 | EE | Hyunsoo Kim, Gene H. Golub, Haesun Park: Imputation of Missing Values in DNA Microarray Gene Expression Data. CSB 2004: 572-573 |
23 | EE | Hyunsoo Kim, Haesun Park: Incremental and Decremental Least Squares Support Vector Machine and Its Application to Drug Design. CSB 2004: 656-657 |
22 | EE | Cheong Hee Park, Haesun Park, Panos M. Pardalos: A Comparative Study of Linear and Nonlinear Feature Extraction Methods. ICDM 2004: 495-498 |
21 | EE | Jieping Ye, Ravi Janardan, Qi Li, Haesun Park: Feature extraction via generalized uncorrelated linear discriminant analysis. ICML 2004 |
20 | EE | Jieping Ye, Qi Li, Hui Xiong, Haesun Park, Ravi Janardan, Vipin Kumar: IDR/QR: an incremental dimension reduction algorithm via QR decomposition. KDD 2004: 364-373 |
19 | EE | Hyunsoo Kim, Haesun Park: Data Reduction in Support Vector Machines by a Kernelized Ionic Interaction Model. SDM 2004 |
18 | EE | Peg Howland, Haesun Park: Equivalence of Several Two-Stage Methods for Linear Discriminant Analysis. SDM 2004 |
17 | EE | Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park: An Optimization Criterion for Generalized Discriminant Analysis on Undersampled Problems. IEEE Trans. Pattern Anal. Mach. Intell. 26(8): 982-994 (2004) |
16 | EE | Peg Howland, Haesun Park: Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8): 995-1006 (2004) |
15 | EE | Cheong Hee Park, Haesun Park: Nonlinear feature extraction based on centroids and kernel functions. Pattern Recognition 37(4): 801-810 (2004) |
2003 | ||
14 | EE | Cheong Hee Park, Haesun Park: Efficient Nonlinear Dimension Reduction for Clustered Data Using Kernel Functions. ICDM 2003: 243-250 |
13 | EE | Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park: A new optimization criterion for generalized discriminant analysis on undersampled problems. ICDM 2003: 419-426 |
12 | EE | Lei Zhang, Haesun Park, J. Ben Rosen: Exponential Modeling with Unknown Model Order Using Structured Nonlinear Total Least Norm. Adv. Comput. Math. 19(1-3): 307-322 (2003) |
11 | EE | Haesun Park, Weili Wu, Zhen Liu, Xiaoyu Wu, Hong G. Zhao: DNA Screening, Pooling Design and Simplicial Complex. J. Comb. Optim. 7(4): 389-394 (2003) |
1994 | ||
10 | Sabine Van Huffel, Haesun Park: Parallel Tri- and Bi-Diagonalization of Bordered Bidiagonal Matrices. Parallel Computing 20(8): 1107-1128 (1994) | |
9 | Ding-Zhu Du, Haesun Park: On Competitive Group Testing. SIAM J. Comput. 23(5): 1019-1025 (1994) | |
1993 | ||
8 | Andrew A. Anda, Haesun Park: Fast QR Decomposition for Weighted Least Squares Problems. PPSC 1993: 399-404 | |
7 | Haesun Park, L. Magnus Ewerbring: An Algorithm for the Generalized Singular Value Decomposition on Massively Parallel Computers. J. Parallel Distrib. Comput. 17(4): 267-276 (1993) | |
1992 | ||
6 | Haesun Park: On Multiple Error Detection in Matrx Triangularizations Using Checksum Methods. J. Parallel Distrib. Comput. 14(1): 90-97 (1992) | |
1991 | ||
5 | EE | Haesun Park, L. Magnus Ewerbring: An algorithm for the generalized singular value decomposition on massively parallel computers. ICS 1991: 136-145 |
1990 | ||
4 | Patricia J. Eberlein, Haesun Park: Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures. J. Parallel Distrib. Comput. 8(4): 358-366 (1990) | |
1989 | ||
3 | Franklin T. Luk, Haesun Park: A Proof of Convergence for Two Parallel Jacobi SVD Algorithms. IEEE Trans. Computers 38(6): 806-811 (1989) | |
1988 | ||
2 | Franklin T. Luk, Haesun Park: Fault-Tolerant Matrix Triangularizations on Systolic Arrays. IEEE Trans. Computers 37(11): 1434-1438 (1988) | |
1 | Franklin T. Luk, Haesun Park: An Analysis of Algorithm-Based Fault Tolerance Techniques. J. Parallel Distrib. Comput. 5(2): 172-184 (1988) |