Jose Antonio Lozano
List of publications from the DBLP Bibliography Server - FAQ
2009 | ||
---|---|---|
59 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Research topics in discrete estimation of distribution algorithms based on factorizations. Memetic Computing 1(1): 35-54 (2009) |
2008 | ||
58 | EE | Jayrani Cheeneebash, José Antonio Lozano, Harry C. S. Rughooputh: A multi-objective approach to the Channel Assignment Problem. IEEE Congress on Evolutionary Computation 2008: 3913-3916 |
57 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Component weighting functions for adaptive search with EDAs. IEEE Congress on Evolutionary Computation 2008: 4066-4073 |
56 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Adding Probabilistic Dependencies to the Search of Protein Side Chain Configurations Using EDAs. PPSN 2008: 1120-1129 |
55 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Adaptive Estimation of Distribution Algorithms. Adaptive and Multilevel Metaheuristics 2008: 177-197 |
54 | EE | Carlos Echegoyen, Roberto Santana, José Antonio Lozano, Pedro Larrañaga: The Impact of Exact Probabilistic Learning Algorithms in EDAs Based on Bayesian Networks. Linkage in Evolutionary Computation 2008: 109-139 |
53 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Protein Folding in Simplified Models With Estimation of Distribution Algorithms. IEEE Trans. Evolutionary Computation 12(4): 418-438 (2008) |
52 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. J. Heuristics 14(5): 519-547 (2008) |
51 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Inference of Population Structure Using Genetic Markers and a Bayesian Model Averaging Approach for Clustering. Journal of Computational Biology 15(2): 207-220 (2008) |
2007 | ||
50 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Discriminative vs. Generative Learning of Bayesian Network Classifiers. ECSQARU 2007: 453-464 |
49 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: The Role of a Priori Information in the Minimization of Contact Potentials by Means of Estimation of Distribution Algorithms. EvoBIO 2007: 247-257 |
48 | EE | Alexander Mendiburu, Roberto Santana, Jose Antonio Lozano, Endika Bengoetxea: A parallel framework for loopy belief propagation. GECCO (Companion) 2007: 2843-2850 |
47 | EE | Beatriz Rey, José Antonio Lozano, Mariano Alcañiz Raya, Luciano Gamberini, Merche Calvet, Daniel Kerrigan, Francesco Martino: Super-Feet: A Wireless Hand-Free Navigation System for Virtual Environments. HCI (14) 2007: 348-357 |
46 | EE | Mariano Alcañiz Raya, Cristina Botella, Beatriz Rey, Rosa María Baños, José Antonio Lozano, Nuria Lasso de la Vega, Diana Castilla, Javier Montesa, Antonio Hospitaler: EMMA: An Adaptive Display for Virtual Therapy. HCI (16) 2007: 258-265 |
45 | EE | Carlos Echegoyen, José Antonio Lozano, Roberto Santana, Pedro Larrañaga: Exact Bayesian network learning in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2007: 1051-1058 |
44 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1): 49-63 (2007) |
43 | EE | Borja Calvo, Núria López-Bigas, Simon J. Furney, Pedro Larrañaga, José Antonio Lozano: A partially supervised classification approach to dominant and recessive human disease gene prediction. Computer Methods and Programs in Biomedicine 85(3): 229-237 (2007) |
42 | EE | Borja Calvo, Pedro Larrañaga, José Antonio Lozano: Learning Bayesian classifiers from positive and unlabeled examples. Pattern Recognition Letters 28(16): 2375-2384 (2007) |
2006 | ||
41 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Mixtures of Kikuchi Approximations. ECML 2006: 365-376 |
40 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Bayesian Model Averaging of TAN Models for Clustering. Probabilistic Graphical Models 2006: 271-278 |
39 | EE | Alexander Mendiburu, José Miguel-Alonso, José Antonio Lozano: Evaluation of Parallel EDAs to Create Chemical Calibration Models. e-Science 2006: 118 |
38 | EE | Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Iñaki Inza, José Antonio Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez Martínez, Victor Robles: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1): 86-112 (2006) |
37 | EE | Ramón Sagarna, José Antonio Lozano: Scatter Search in software testing, comparison and collaboration with Estimation of Distribution Algorithms. European Journal of Operational Research 169(2): 392-412 (2006) |
36 | EE | Alexander Mendiburu, José Miguel-Alonso, José Antonio Lozano, M. Ostra, C. Ubide: Parallel EDAs to create multivariate calibration models for quantitative chemical applications. J. Parallel Distrib. Comput. 66(8): 1002-1013 (2006) |
35 | EE | Alexander Mendiburu, José Miguel-Alonso, José Antonio Lozano: Implementation and Performance Evaluation of a Parallelization of Estimation of Bayesian Network Algorithms. Parallel Processing Letters 16(1): 133-148 (2006) |
2005 | ||
34 | EE | Rubén Armañanzas, José Antonio Lozano: A multiobjective approach to the portfolio optimization problem. Congress on Evolutionary Computation 2005: 1388-1395 |
33 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Interactions and dependencies in estimation of distribution algorithms. Congress on Evolutionary Computation 2005: 1418-1425 |
32 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Discriminative Learning of Bayesian Network Classifiers via the TM Algorithm. ECSQARU 2005: 148-160 |
31 | EE | Alexander Mendiburu, José Miguel-Alonso, José Antonio Lozano, M. Ostra, C. Ubide: Parallel and Multi-Objective EDAs to Create Multivariate Calibration Models for Quantitative Chemical Applications. ICPP Workshops 2005: 596-603 |
30 | EE | C. González, A. Ramírez, José Antonio Lozano, Pedro Larrañaga: Average Time Complexity of Estimation of Distribution Algorithms. IWANN 2005: 42-49 |
29 | EE | José Antonio Lozano, Javier Montesa, Mari C. Juan, Mariano Alcañiz Raya, Beatriz Rey, José Antonio Gil, José M. Martinez, Andrea Gaggioli, Francesca Morganti: VR-Mirror: A Virtual Reality System for Mental Practice in Post-Stroke Rehabilitation. Smart Graphics 2005: 241-251 |
28 | EE | Ramón Sagarna, José Antonio Lozano: On The Performance Of Estimation Of Distribution Algorithms Applied To Software Testing. Applied Artificial Intelligence 19(5): 457-489 (2005) |
27 | EE | Pedro Larrañaga, José Antonio Lozano: Editorial Introduction Special Issue on Estimation of Distribution Algorithms. Evolutionary Computation 13(1): (2005) |
26 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation 13(1): 43-66 (2005) |
25 | EE | Alexander Mendiburu, José Antonio Lozano, José Miguel-Alonso: Parallel Implementation of EDAs Based on Probabilistic Graphical Models. IEEE Trans. Evolutionary Computation 9(4): 406-423 (2005) |
24 | EE | Pedro Larrañaga, José Antonio Lozano, José Manuel Peña, Iñaki Inza: Editorial. Machine Learning 59(3): 211-212 (2005) |
2004 | ||
23 | Xin Yao, Edmund K. Burke, José Antonio Lozano, Jim Smith, Juan J. Merelo Guervós, John A. Bullinaria, Jonathan E. Rowe, Peter Tiño, Ata Kabán, Hans-Paul Schwefel: Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference, Birmingham, UK, September 18-22, 2004, Proceedings Springer 2004 | |
22 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Protein Folding in 2-Dimensional Lattices with Estimation of Distribution Algorithms. ISBMDA 2004: 388-398 |
21 | EE | M. Carmen Juan Lizandra, Cristina Botella, Mariano Alcañiz Raya, Rosa María Baños, Carolina Carrion Benedito, M. Melero, José Antonio Lozano: An Augmented Reality System for Treating Psychological Disorders: Application to Phobia to Cockroaches. ISMAR 2004: 256-257 |
20 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Unsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(Supplement-1): 63-82 (2004) |
2003 | ||
19 | EE | C. González, J. D. Rodríguez, José Antonio Lozano, Pedro Larrañaga: Analysis of the Univariate Marginal Distribution Algorithm Modeled by Markov Chains. IWANN (1) 2003: 510-517 |
18 | EE | Pedro Larrañaga, José Antonio Lozano, Heinz Mühlenbein: Algoritmos de Estimación de Distribuciones en Problemas de Optimización Combinatoria. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 19: 149-168 (2003) |
2002 | ||
17 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Unsupervised Learning of Bayesian Networks Via Estimation of Distribution Algorithms. Probabilistic Graphical Models 2002 |
16 | Rosa María Baños, Cristina Botella, C. Perpina, Mariano Alcañiz Raya, José Antonio Lozano, Jorge Osma, M. Gallardo: Virtual reality treatment of flying phobia. IEEE Transactions on Information Technology in Biomedicine 6(3): 206-212 (2002) | |
15 | EE | Pedro Larrañaga, José Antonio Lozano: Synergies between evolutionary computation and probabilistic graphical models. Int. J. Approx. Reasoning 31(3): 155-156 (2002) |
14 | EE | C. González, José Antonio Lozano, Pedro Larrañaga: Mathematical modelling of UMDAc algorithm with tournament selection. Behaviour on linear and quadratic functions. Int. J. Approx. Reasoning 31(3): 313-340 (2002) |
13 | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction. Machine Learning 47(1): 63-89 (2002) | |
2001 | ||
12 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga, Iñaki Inza: Dimensionality Reduction in Unsupervised Learning of Conditional Gaussian Networks. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 590-603 (2001) |
11 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Performance evaluation of compromise conditional Gaussian networks for data clustering. Int. J. Approx. Reasoning 28(1): 23-50 (2001) |
2000 | ||
10 | EE | Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José Manuel Peña: Combinatonal Optimization by Learning and Simulation of Bayesian Networks. UAI 2000: 343-352 |
9 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recognition Letters 21(8): 779-786 (2000) |
1999 | ||
8 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognition Letters 20(10): 1027-1040 (1999) |
7 | EE | Iñaki Inza, Pedro Larrañaga, Basilio Sierra, Ramon Etxeberria, José Antonio Lozano, José Manuel Peña: Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recognition Letters 20(11-13): 1201-1209 (1999) |
6 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Letters 20(11-13): 1219-1230 (1999) |
5 | EE | José Antonio Lozano, Pedro Larrañaga: Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recognition Letters 20(9): 911-918 (1999) |
4 | EE | José Antonio Lozano, Pedro Larrañaga, Manuel Graña, F. Xabier Albizuri: Genetic Algorithms: Bridging the Convergence Gap. Theor. Comput. Sci. 229(1): 11-22 (1999) |
1998 | ||
3 | EE | Jorge Sanchez, José Antonio Lozano, Martin Alarcon, Virgilio Postigo: Qsn: a model to the network-service interface. NOMS 1998: 288-291 |
2 | José Antonio Lozano, Pedro Larrañaga: Aplicación de los algoritmos genéticos al problema del clustering jerárquico. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 5: 62-67 (1998) | |
1996 | ||
1 | EE | F. Xabier Albizuri, Alicia D'Anjou, Manuel Graña, José Antonio Lozano: Convergence Properties of High-order Boltzmann Machines. Neural Networks 9(9): 1561-1567 (1996) |