2009 | ||
---|---|---|
85 | EE | Aritz Pérez, Pedro Larrañaga, Iñaki Inza: Bayesian classifiers based on kernel density estimation: Flexible classifiers. Int. J. Approx. Reasoning 50(2): 341-362 (2009) |
84 | EE | Txomin Romero, Pedro Larrañaga: Triangulation of Bayesian networks with recursive estimation of distribution algorithms. Int. J. Approx. Reasoning 50(3): 472-484 (2009) |
83 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Research topics in discrete estimation of distribution algorithms based on factorizations. Memetic Computing 1(1): 35-54 (2009) |
2008 | ||
82 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Component weighting functions for adaptive search with EDAs. IEEE Congress on Evolutionary Computation 2008: 4066-4073 |
81 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Adding Probabilistic Dependencies to the Search of Protein Side Chain Configurations Using EDAs. PPSN 2008: 1120-1129 |
80 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Adaptive Estimation of Distribution Algorithms. Adaptive and Multilevel Metaheuristics 2008: 177-197 |
79 | EE | Carlos Echegoyen, Roberto Santana, José Antonio Lozano, Pedro Larrañaga: The Impact of Exact Probabilistic Learning Algorithms in EDAs Based on Bayesian Networks. Linkage in Evolutionary Computation 2008: 109-139 |
78 | EE | Dinora Araceli Morales, Endika Bengoetxea, Pedro Larrañaga, Miguel García, Yosu Franco, Mónica Fresnada, Marisa Merino: Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Computer Methods and Programs in Biomedicine 90(2): 104-116 (2008) |
77 | EE | Rubén Armañanzas, Iñaki Inza, Pedro Larrañaga: Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. Computer Methods and Programs in Biomedicine 91(2): 110-121 (2008) |
76 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Protein Folding in Simplified Models With Estimation of Distribution Algorithms. IEEE Trans. Evolutionary Computation 12(4): 418-438 (2008) |
75 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. J. Heuristics 14(5): 519-547 (2008) |
74 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Inference of Population Structure Using Genetic Markers and a Bayesian Model Averaging Approach for Clustering. Journal of Computational Biology 15(2): 207-220 (2008) |
2007 | ||
73 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Discriminative vs. Generative Learning of Bayesian Network Classifiers. ECSQARU 2007: 453-464 |
72 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: The Role of a Priori Information in the Minimization of Contact Potentials by Means of Estimation of Distribution Algorithms. EvoBIO 2007: 247-257 |
71 | EE | Carlos Echegoyen, José Antonio Lozano, Roberto Santana, Pedro Larrañaga: Exact Bayesian network learning in estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2007: 1051-1058 |
70 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Side chain placement using estimation of distribution algorithms. Artificial Intelligence in Medicine 39(1): 49-63 (2007) |
69 | EE | Yvan Saeys, Iñaki Inza, Pedro Larrañaga: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19): 2507-2517 (2007) |
68 | EE | Borja Calvo, Núria López-Bigas, Simon J. Furney, Pedro Larrañaga, José Antonio Lozano: A partially supervised classification approach to dominant and recessive human disease gene prediction. Computer Methods and Programs in Biomedicine 85(3): 229-237 (2007) |
67 | EE | Teresa Miquélez, Endika Bengoetxea, Alexander Mendiburu, Pedro Larrañaga: Combining Bayesian classifiers and estimation of distribution algorithms for optimization in continuous domains. Connect. Sci. 19(4): 297-319 (2007) |
66 | EE | J. L. Flores, Iñaki Inza, Pedro Larrañaga: Wrapper discretization by means of estimation of distribution algorithms. Intell. Data Anal. 11(5): 525-545 (2007) |
65 | EE | Borja Calvo, Pedro Larrañaga, José Antonio Lozano: Learning Bayesian classifiers from positive and unlabeled examples. Pattern Recognition Letters 28(16): 2375-2384 (2007) |
2006 | ||
64 | EE | Aritz Pérez Martínez, Pedro Larrañaga, Iñaki Inza: Information Theory and Classification Error in Probabilistic Classifiers. Discovery Science 2006: 347-351 |
63 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Mixtures of Kikuchi Approximations. ECML 2006: 365-376 |
62 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Bayesian Model Averaging of TAN Models for Clustering. Probabilistic Graphical Models 2006: 271-278 |
61 | EE | Teresa Miquélez, Endika Bengoetxea, Pedro Larrañaga: Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains. SEAL 2006: 529-536 |
60 | EE | Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Iñaki Inza, José Antonio Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez Martínez, Victor Robles: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1): 86-112 (2006) |
59 | EE | Aritz Pérez Martínez, Pedro Larrañaga, Iñaki Inza: Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. Int. J. Approx. Reasoning 43(1): 1-25 (2006) |
2005 | ||
58 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Interactions and dependencies in estimation of distribution algorithms. Congress on Evolutionary Computation 2005: 1418-1425 |
57 | EE | Guzmán Santafé, José Antonio Lozano, Pedro Larrañaga: Discriminative Learning of Bayesian Network Classifiers via the TM Algorithm. ECSQARU 2005: 148-160 |
56 | EE | C. González, A. Ramírez, José Antonio Lozano, Pedro Larrañaga: Average Time Complexity of Estimation of Distribution Algorithms. IWANN 2005: 42-49 |
55 | EE | Pedro Larrañaga, José Antonio Lozano: Editorial Introduction Special Issue on Estimation of Distribution Algorithms. Evolutionary Computation 13(1): (2005) |
54 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. Evolutionary Computation 13(1): 43-66 (2005) |
53 | EE | Rosa Blanco, Iñaki Inza, Marisa Merino, Jorge Quiroga, Pedro Larrañaga: Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. Journal of Biomedical Informatics 38(5): 376-388 (2005) |
52 | EE | Pedro Larrañaga, José Antonio Lozano, José Manuel Peña, Iñaki Inza: Editorial. Machine Learning 59(3): 211-212 (2005) |
51 | EE | Roberto Marcondes Cesar Junior, Endika Bengoetxea, Isabelle Bloch, Pedro Larrañaga: Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms. Pattern Recognition 38(11): 2099-2113 (2005) |
2004 | ||
50 | EE | José M. Peña Sánchez, Víctor Robles, Pedro Larrañaga, Vanessa Herves, F. Rosales, María S. Pérez: GA-EDA: Hybrid Evolutionary Algorithm Using Genetic and Estimation of Distribution Algorithms. IEA/AIE 2004: 361-371 |
49 | EE | Rosa Blanco, Linda C. van der Gaag, Iñaki Inza, Pedro Larrañaga: Selective Classifiers Can Be Too Restrictive: A Case-Study in Oesophageal Cancer. ISBMDA 2004: 212-223 |
48 | EE | Roberto Santana, Pedro Larrañaga, José Antonio Lozano: Protein Folding in 2-Dimensional Lattices with Estimation of Distribution Algorithms. ISBMDA 2004: 388-398 |
47 | EE | Víctor Robles, Pedro Larrañaga, José Manuel Peña, Ernestina Menasalvas Ruiz, María S. Pérez, Vanessa Herves, Anita Wasilewska: Bayesian network multi-classifiers for protein secondary structure prediction. Artificial Intelligence in Medicine 31(2): 117-136 (2004) |
46 | EE | Iñaki Inza, Pedro Larrañaga, Rosa Blanco, Antonio J. Cerrolaza: Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine 31(2): 91-103 (2004) |
45 | EE | Txomin Romero, Pedro Larrañaga, Basilio Sierra: Learning Bayesian Networks In The Space Of Orderings With Estimation Of Distribution Algorithms. IJPRAI 18(4): 607-625 (2004) |
44 | EE | Rosa Blanco, Pedro Larrañaga, Iñaki Inza, Basilio Sierra: Gene Selection For Cancer Classification Using Wrapper Approaches. IJPRAI 18(8): 1373-1390 (2004) |
43 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Unsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(Supplement-1): 63-82 (2004) |
2003 | ||
42 | EE | Víctor Robles, Pedro Larrañaga, José M. Peña Sánchez, Oscar Marbán, F. Javier Crespo, María S. Pérez: Collaborative Filtering Using Interval Estimation Naïve Bayes. AWIC 2003: 46-53 |
41 | EE | Víctor Robles, Pedro Larrañaga, José M. Peña Sánchez, María S. Pérez, Ernestina Menasalvas Ruiz, Vanessa Herves: Learning Semi Naïve Bayes Structures by Estimation of Distribution Algorithms. EPIA 2003: 244-258 |
40 | EE | Víctor Robles, Pedro Larrañaga, José M. Peña Sánchez, Ernestina Menasalvas Ruiz, María S. Pérez: Interval Estimation Naïve Bayes. IDA 2003: 143-154 |
39 | EE | C. González, J. D. Rodríguez, José Antonio Lozano, Pedro Larrañaga: Analysis of the Univariate Marginal Distribution Algorithm Modeled by Markov Chains. IWANN (1) 2003: 510-517 |
38 | EE | Víctor Robles, María S. Pérez, Vanessa Herves, José M. Peña Sánchez, Pedro Larrañaga: Parallel Stochastic Search for Protein Secondary Structure Prediction. PPAM 2003: 1162-1169 |
37 | EE | Víctor Robles, Pedro Larrañaga, Ernestina Menasalvas Ruiz, María S. Pérez, Vanessa Herves: Improvement of Naïve Bayes Collaborative Filtering Using Interval Estimation. Web Intelligence 2003: 168-174 |
36 | EE | Rosa Blanco, Iñaki Inza, Pedro Larrañaga: Learning Bayesian networks in the space of structures by estimation of distribution algorithms. Int. J. Intell. Syst. 18(2): 205-220 (2003) |
35 | EE | Pedro Larrañaga, José Antonio Lozano, Heinz Mühlenbein: Algoritmos de Estimación de Distribuciones en Problemas de Optimización Combinatoria. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 19: 149-168 (2003) |
2002 | ||
34 | EE | Rosa Blanco, Iñaki Inza, Pedro Larrañaga: Floating Search Methods in Learning Bayesian Networks. Probabilistic Graphical Models 2002 |
33 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Unsupervised Learning of Bayesian Networks Via Estimation of Distribution Algorithms. Probabilistic Graphical Models 2002 |
32 | EE | Pedro Larrañaga, José Antonio Lozano: Synergies between evolutionary computation and probabilistic graphical models. Int. J. Approx. Reasoning 31(3): 155-156 (2002) |
31 | EE | C. González, José Antonio Lozano, Pedro Larrañaga: Mathematical modelling of UMDAc algorithm with tournament selection. Behaviour on linear and quadratic functions. Int. J. Approx. Reasoning 31(3): 313-340 (2002) |
30 | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction. Machine Learning 47(1): 63-89 (2002) | |
29 | EE | Endika Bengoetxea, Pedro Larrañaga, Isabelle Bloch, Aymeric Perchant, Claudia Boeres: Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognition 35(12): 2867-2880 (2002) |
2001 | ||
28 | EE | Basilio Sierra, Elena Lazkano, Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga: Prototype Selection and Feature Subset Selection by Estimation of Distribution Algorithms. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS. AIME 2001: 20-29 |
27 | EE | Endika Bengoetxea, Pedro Larrañaga, Isabelle Bloch, Aymeric Perchant: Estimation of Distribution Algorithms: A New Evolutionary Computation Approach for Graph Matching Problems. EMMCVPR 2001: 454-468 |
26 | EE | Basilio Sierra, Iñaki Inza, Pedro Larrañaga: On Applying Supervised Classification Techniques in Medicine. ISMDA 2001: 14-19 |
25 | Basilio Sierra, Nicolás Serrano, Pedro Larrañaga, Eliseo J. Plasencia, Iñaki Inza, Juan José Jiménez, Pedro Revuelta, María Luisa Mora: Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data. Artificial Intelligence in Medicine 22(3): 233-248 (2001) | |
24 | Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga, Basilio Sierra, Marcos Girala: Feature subset selection by genetic algorithms and estimation of distribution algorithms - A case study in the survival of cirrhotic patients treated with TIPS. Artificial Intelligence in Medicine 23(2): 187-205 (2001) | |
23 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga, Iñaki Inza: Dimensionality Reduction in Unsupervised Learning of Conditional Gaussian Networks. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 590-603 (2001) |
22 | EE | Iñaki Inza, Pedro Larrañaga, Basilio Sierra: Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms. Int. J. Approx. Reasoning 27(2): 143-164 (2001) |
21 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Performance evaluation of compromise conditional Gaussian networks for data clustering. Int. J. Approx. Reasoning 28(1): 23-50 (2001) |
2000 | ||
20 | EE | Basilio Sierra, Iñaki Inza, Pedro Larrañaga: Medical Bayes Networks. ISMDA 2000: 4-14 |
19 | EE | Iñaki Inza, Marisa Merino, Pedro Larrañaga, Jorge Quiroga, Basilio Sierra, Marcos Girala: Feature Subset Selection Using Probabilistic Tree Structures. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS. ISMDA 2000: 97-110 |
18 | EE | Pedro Larrañaga, Ramon Etxeberria, José Antonio Lozano, José Manuel Peña: Combinatonal Optimization by Learning and Simulation of Bayesian Networks. UAI 2000: 343-352 |
17 | EE | Iñaki Inza, Pedro Larrañaga, Ramon Etxeberria, Basilio Sierra: Feature Subset Selection by Bayesian network-based optimization. Artif. Intell. 123(1-2): 157-184 (2000) |
16 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recognition Letters 21(8): 779-786 (2000) |
1999 | ||
15 | EE | Basilio Sierra, Nicolás Serrano, Pedro Larrañaga, Eliseo J. Plasencia, Iñaki Inza, Juan José Jiménez, Jose María De la Rosa, María Luisa Mora: Machine Learning Inspired Approaches to Combine Standard Medical Measures at an Intensive Care Unit. AIMDM 1999: 366-371 |
14 | Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Iñaki Inza, S. Dizdarevic: Genetic Algorithms for the Travelling Salesman Problem: A Review of Representations and Operators. Artif. Intell. Rev. 13(2): 129-170 (1999) | |
13 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognition Letters 20(10): 1027-1040 (1999) |
12 | EE | Iñaki Inza, Pedro Larrañaga, Basilio Sierra, Ramon Etxeberria, José Antonio Lozano, José Manuel Peña: Representing the behaviour of supervised classification learning algorithms by Bayesian networks. Pattern Recognition Letters 20(11-13): 1201-1209 (1999) |
11 | EE | José Manuel Peña, José Antonio Lozano, Pedro Larrañaga: Learning Bayesian networks for clustering by means of constructive induction. Pattern Recognition Letters 20(11-13): 1219-1230 (1999) |
10 | EE | José Antonio Lozano, Pedro Larrañaga: Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recognition Letters 20(9): 911-918 (1999) |
9 | EE | José Antonio Lozano, Pedro Larrañaga, Manuel Graña, F. Xabier Albizuri: Genetic Algorithms: Bridging the Convergence Gap. Theor. Comput. Sci. 229(1): 11-22 (1999) |
1998 | ||
8 | Basilio Sierra, Pedro Larrañaga: Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial Intelligence in Medicine 14(1-2): 215-230 (1998) | |
7 | José Antonio Lozano, Pedro Larrañaga: Aplicación de los algoritmos genéticos al problema del clustering jerárquico. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 5: 62-67 (1998) | |
1997 | ||
6 | Pedro Larrañaga, Basilio Sierra, Miren J. Gallego, Maria J. Michelena, Juan M. Picaza: Learning Bayesisan Networks by Genetic Algorithms: A Case Study in the Prediction of Survival in Malignant Skin Melanoma. AIME 1997: 261-272 | |
5 | Pedro Larrañaga, Miren J. Gallego, Basilio Sierra, L. Urkola, Maria J. Michelena: Bayesian Networks, Rule Induction and Logistic Regression in the Prediction of the Survival of Women Suffering from Breast Cancer. EPIA 1997: 303-308 | |
4 | EE | Ramon Etxeberria, Pedro Larrañaga, Juan M. Picaza: Analysis of the behaviour of genetic algorithms when learning Bayesian network structure from data. Pattern Recognition Letters 18(11-13): 1269-1273 (1997) |
1996 | ||
3 | EE | Pedro Larrañaga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga, Cindy M. H. Kuijpers: Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans. Pattern Anal. Mach. Intell. 18(9): 912-926 (1996) |
1993 | ||
2 | Pedro Larrañaga, Manuel Graña, Alicia D'Anjou, Francisco Javier Torrealdea: Genetic Algorithms Elitist Probabilistic of Degree 1, a generalization of Simulated Annealing. AI*IA 1993: 208-217 | |
1 | Pedro Larrañaga, Yosu Yurramendi: Structure learning approaches in Causal Probalistics Networks. ECSQARU 1993: 227-232 |