2008 |
48 | EE | Erik Strumbelj,
Igor Kononenko:
Towards a Model Independent Method for Explaining Classification for Individual Instances.
DaWaK 2008: 273-282 |
47 | EE | Zoran Bosnic,
Igor Kononenko:
Empirical Analysis of Reliability Estimates for Individual Regression Predictions.
DaWaK 2008: 379-388 |
46 | EE | Zoran Bosnic,
Igor Kononenko:
Estimation of individual prediction reliability using the local sensitivity analysis.
Appl. Intell. 29(3): 187-203 (2008) |
45 | EE | Zoran Bosnic,
Igor Kononenko:
Comparison of approaches for estimating reliability of individual regression predictions.
Data Knowl. Eng. 67(3): 504-516 (2008) |
44 | EE | Marko Robnik-Sikonja,
Igor Kononenko:
Explaining Classifications For Individual Instances.
IEEE Trans. Knowl. Data Eng. 20(5): 589-600 (2008) |
2006 |
43 | EE | Matjaz Bevk,
Igor Kononenko:
Towards symbolic mining of images with association rules: Preliminary results on textures.
Intell. Data Anal. 10(4): 379-393 (2006) |
2005 |
42 | EE | Luka Sajn,
Matjaz Kukar,
Igor Kononenko,
Metka Milcinski:
Automatic Segmentation of Whole-Body Bone Scintigrams as a Preprocessing Step for Computer Assisted Diagnostics.
AIME 2005: 363-372 |
41 | EE | Igor Kononenko,
Miha Sedej,
Aleksander Sadikov:
GDV Measures Vitality?
CBMS 2005: 443-445 |
40 | | Zoran Bosnic,
Igor Kononenko:
Estimation of Prediction Reliability in Regression Based on a Transductive Approach.
IICAI 2005: 3502-3516 |
39 | EE | Luka Sajn,
Matjaz Kukar,
Igor Kononenko,
Metka Milcinski:
Computerized segmentation of whole-body bone scintigrams and its use in automated diagnostics.
Computer Methods and Programs in Biomedicine 80(1): 47-55 (2005) |
38 | EE | Aleksander Sadikov,
Ivan Bratko,
Igor Kononenko:
Bias and pathology in minimax search.
Theor. Comput. Sci. 349(2): 268-281 (2005) |
2003 |
37 | | Aleksander Sadikov,
Ivan Bratko,
Igor Kononenko:
Search versus Knowledge: An Empirical Study of Minimax on KRK.
ACG 2003: 33-44 |
36 | EE | Marko Robnik-Sikonja,
David Cukjati,
Igor Kononenko:
Comprehensible evaluation of prognostic factors and prediction of wound healing.
Artificial Intelligence in Medicine 29(1-2): 25-38 (2003) |
35 | EE | Marko Robnik-Sikonja,
Igor Kononenko:
Theoretical and Empirical Analysis of ReliefF and RReliefF.
Machine Learning 53(1-2): 23-69 (2003) |
2002 |
34 | EE | Matjaz Bevk,
Igor Kononenko:
A Statistical Approach to Texture Description of Medical Images: A Preliminary Study.
CBMS 2002: 239-240 |
33 | EE | Matjaz Kukar,
Igor Kononenko:
Reliable Classifications with Machine Learning.
ECML 2002: 219-231 |
2001 |
32 | EE | Marko Robnik-Sikonja,
David Cukjati,
Igor Kononenko:
Evaluation of Prognostic Factors and Prediction of Chronic Wound Healing Rate by Machine Learning Tools.
AIME 2001: 77-87 |
31 | | Marko Robnik-Sikonja,
Igor Kononenko:
Comprehensible Interpretation of Relief's Estimates.
ICML 2001: 433-440 |
30 | | Igor Kononenko:
Machine learning for medical diagnosis: history, state of the art and perspective.
Artificial Intelligence in Medicine 23(1): 89-109 (2001) |
1999 |
29 | | Marko Robnik-Sikonja,
Igor Kononenko:
Attribute Dependencies, Understandability and Split Selection in Tree Based Models.
ICML 1999: 344-353 |
28 | | Matjaz Kukar,
Igor Kononenko,
Ciril Groselj,
Katarina Kralj,
Jure Fettich:
Analysing and improving the diagnosis of ischaemic heart disease with machine learning.
Artificial Intelligence in Medicine 16(1): 25-50 (1999) |
1998 |
27 | | Matjaz Kukar,
Igor Kononenko:
Cost-Sensitive Learning with Neural Networks.
ECAI 1998: 445-449 |
26 | | Marko Robnik-Sikonja,
Igor Kononenko:
Pruning Regression Trees with MDL.
ECAI 1998: 455-459 |
25 | | Igor Kononenko:
The Minimum Description Length Based Decision Tree Pruning.
PRICAI 1998: 228-237 |
24 | | Nada Lavrac,
Blaz Zupan,
Igor Kononenko,
Matjaz Kukar,
Elpida T. Keravnou:
Intelligent Data Analysis for Medical Diagnosis: Using Machine Learning and Temporal Abstraction.
AI Commun. 11(3-4): 191-218 (1998) |
23 | EE | Uros Pompe,
Igor Kononenko:
Efficient Induction and Effective Use of First-Order Knowledge.
Applied Artificial Intelligence 12(5): 421-453 (1998) |
22 | EE | Samo Zorc,
D. Noe,
Igor Kononenko:
Efficient Derivation of the Optimal Assembly Sequence from Product Description.
Cybernetics and Systems 29(2): 159-179 (1998) |
1997 |
21 | | Igor Zelic,
Igor Kononenko,
Nada Lavrac,
Vanja Vuga:
Machine Learning Applied to Diagnosis of Sport Injuries.
AIME 1997: 138-141 |
20 | | Matjaz Kukar,
Ciril Groselj,
Igor Kononenko,
Jure Fettich:
An Application of Machine Learning in the Diagnosis of Ischaemic Heart Disease.
AIME 1997: 461-464 |
19 | EE | Igor Zelic,
Igor Kononenko,
Nada Lavrac,
Vanja Vuga:
Diagnosis of sport injuries with machine learning: explanation of induced decisions.
CBMS 1997: 195-199 |
18 | EE | Matjaz Kukar,
Ciril Groselj,
Igor Kononenko,
Jure Fettich:
An application of machine learning in the diagnosis of ischaemic heart disease.
CBMS 1997: 70-75 |
17 | | Marko Robnik-Sikonja,
Igor Kononenko:
An adaptation of Relief for attribute estimation in regression.
ICML 1997: 296-304 |
16 | | Uros Pompe,
Igor Kononenko:
Probabilistic First-Order Classification.
ILP 1997: 235-242 |
15 | | Igor Kononenko,
Edvard Simec,
Marko Robnik-Sikonja:
Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF.
Appl. Intell. 7(1): 39-55 (1997) |
1996 |
14 | | Ivan Bratko,
Bojan Cestnik,
Igor Kononenko:
Attribute-Based Learning.
AI Commun. 9(1): 27-32 (1996) |
13 | | Matjaz Kukar,
Igor Kononenko,
T. Silvester:
Machine learning in prognosis of the femoral neck fracture recovery.
Artificial Intelligence in Medicine 8(5): 431-451 (1996) |
12 | | Igor Kononenko:
On Facts Versus Misconceptions about Rough Sets.
Informatica (Slovenia) 20(4): (1996) |
1995 |
11 | | Igor Kononenko:
On Biases in Estimating Multi-Valued Attributes.
IJCAI 1995: 1034-1040 |
1994 |
10 | | Igor Kononenko:
Estimating Attributes: Analysis and Extensions of RELIEF.
ECML 1994: 171-182 |
9 | | Igor Kononenko:
On Bayesian Neural Networks.
Informatica (Slovenia) 18(2): (1994) |
8 | | Igor Kononenko,
Samo Zorc:
Critical Analysis of Rough Sets Approach to Machine Learning.
Informatica (Slovenia) 18(3): (1994) |
1993 |
7 | | Igor Kononenko:
Inductive and Bayesian learning in medical diagnosis.
Applied Artificial Intelligence 7(4): 317-337 (1993) |
6 | | Igor Kononenko:
Successive Naive Bayesian Classifier.
Informatica (Slovenia) 17(2): (1993) |
1992 |
5 | | Igor Kononenko:
Combining Decisions of Multiple Rules.
AIMSA 1992: 87-96 |
4 | | Igor Kononenko,
Matevz Kovacic:
Learning as Optimization: Stochastic Generation of Multiple Knowledge.
ML 1992: 257-262 |
1991 |
3 | | Igor Kononenko:
Semi-Naive Bayesian Classifier.
EWSL 1991: 206-219 |
2 | | Igor Kononenko,
Ivan Bratko:
Information-Based Evaluation Criterion for Classifier's Performance.
Machine Learning 6: 67-80 (1991) |
1987 |
1 | | Bojan Cestnik,
Igor Kononenko,
Ivan Bratko:
ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated Users.
EWSL 1987: 31-45 |