| 2003 |
| 20 | EE | Stuart Haber,
Bill G. Horne,
Joe Pato,
Tomas Sander,
Robert Endre Tarjan:
If Piracy Is the Problem, Is DRM the Answer?
Digital Rights Management 2003: 224-233 |
| 2001 |
| 19 | EE | Bill G. Horne,
Benny Pinkas,
Tomas Sander:
Escrow services and incentives in peer-to-peer networks.
ACM Conference on Electronic Commerce 2001: 85-94 |
| 18 | EE | Bill G. Horne,
Lesley R. Matheson,
Casey Sheehan,
Robert Endre Tarjan:
Dynamic Self-Checking Techniques for Improved Tamper Resistance.
Digital Rights Management Workshop 2001: 141-159 |
| 17 | | Peter Tiño,
Bill G. Horne,
C. Lee Giles:
Attractive Periodic Sets in Discrete-Time Recurrent Networks (with Emphasis on Fixed-Point Stability and Bifurcations in Two-Neuron Networks).
Neural Computation 13(6): 1379-1414 (2001) |
| 2000 |
| 16 | | Frank L. Lewis,
Bill G. Horne,
Chaouki T. Abdallah:
Computational complexity of determining resource loops in re-entrant flow lines.
IEEE Transactions on Systems, Man, and Cybernetics, Part A 30(2): 222-229 (2000) |
| 1998 |
| 15 | EE | Don R. Hush,
Bill G. Horne:
Efficient algorithms for function approximation with piecewise linear sigmoidal networks.
IEEE Transactions on Neural Networks 9(6): 1129-1141 (1998) |
| 14 | EE | Tsungnan Lin,
Bill G. Horne,
C. Lee Giles:
How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies.
Neural Networks 11(5): 861-868 (1998) |
| 1997 |
| 13 | | M. F. Sakr,
Steven P. Levitan,
Donald M. Chiarulli,
Bill G. Horne,
C. Lee Giles:
Predicting Multiprocessor Memory Access Patterns with Learning Models.
ICML 1997: 305-312 |
| 12 | | Don R. Hush,
Fernando Lozano,
Bill G. Horne:
Function Approximation with the Sweeping Hinge Algorithm.
NIPS 1997 |
| 11 | | Hava T. Siegelmann,
Bill G. Horne,
C. Lee Giles:
Computational capabilities of recurrent NARX neural networks.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 27(2): 208-215 (1997) |
| 1996 |
| 10 | EE | Daniel S. Clouse,
C. Lee Giles,
Bill G. Horne,
Garrison W. Cottrell:
Representation and Induction of Finite State Machines using Time-Delay Neural Networks.
NIPS 1996: 403-409 |
| 9 | EE | Bill G. Horne,
Don R. Hush:
Bounds on the complexity of recurrent neural network implementations of finite state machines.
Neural Networks 9(2): 243-252 (1996) |
| 1995 |
| 8 | EE | Tsungnan Lin,
Bill G. Horne,
Peter Tiño,
C. Lee Giles:
Learning long-term dependencies is not as difficult with NARX networks.
NIPS 1995: 577-583 |
| 7 | | Bill G. Horne,
Hava T. Siegelmann,
C. Lee Giles:
What NARX Networks Can Compute.
SOFSEM 1995: 95-102 |
| 6 | EE | C. Lee Giles,
Bill G. Horne,
Tsungnan Lin:
Learning a class of large finite state machines with a recurrent neural network.
Neural Networks 8(9): 1359-1365 (1995) |
| 1994 |
| 5 | EE | Laurens R. Leerink,
C. Lee Giles,
Bill G. Horne,
Marwan A. Jabri:
Learning with Product Units.
NIPS 1994: 537-544 |
| 4 | EE | Kam-Chuen Jim,
Bill G. Horne,
C. Lee Giles:
Effects of Noise on Convergence and Generalization in Recurrent Networks.
NIPS 1994: 649-656 |
| 3 | EE | Bill G. Horne,
C. Lee Giles:
An experimental comparison of recurrent neural networks.
NIPS 1994: 697-704 |
| 2 | EE | Bill G. Horne,
Don R. Hush:
On the node complexity of neural networks.
Neural Networks 7(9): 1413-1426 (1994) |
| 1993 |
| 1 | EE | Bill G. Horne,
Don R. Hush:
Bounds on the Complexity of Recurrent Neural Network Implementations of Finite State Machines.
NIPS 1993: 359-366 |