| 2007 |
| 22 | EE | Nikolas List,
Don R. Hush,
Clint Scovel,
Ingo Steinwart:
Gaps in Support Vector Optimization.
COLT 2007: 336-348 |
| 21 | EE | Don R. Hush,
Clint Scovel,
Ingo Steinwart:
Stability of Unstable Learning Algorithms.
Machine Learning 67(3): 197-206 (2007) |
| 2006 |
| 20 | EE | Ingo Steinwart,
Don R. Hush,
Clint Scovel:
Function Classes That Approximate the Bayes Risk.
COLT 2006: 79-93 |
| 19 | EE | Ingo Steinwart,
Don R. Hush,
Clint Scovel:
An Oracle Inequality for Clipped Regularized Risk Minimizers.
NIPS 2006: 1321-1328 |
| 18 | EE | Ingo Steinwart,
Don R. Hush,
Clint Scovel:
An Explicit Description of the Reproducing Kernel Hilbert Spaces of Gaussian RBF Kernels.
IEEE Transactions on Information Theory 52(10): 4635-4643 (2006) |
| 17 | EE | Don R. Hush,
Patrick Kelly,
Clint Scovel,
Ingo Steinwart:
QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines.
Journal of Machine Learning Research 7: 733-769 (2006) |
| 2005 |
| 16 | EE | Ingo Steinwart,
Don R. Hush,
Clint Scovel:
A Classification Framework for Anomaly Detection.
Journal of Machine Learning Research 6: 211-232 (2005) |
| 2004 |
| 15 | EE | Ingo Steinwart,
Don R. Hush,
Clint Scovel:
Density Level Detection is Classification.
NIPS 2004 |
| 14 | | Don R. Hush,
Clint Scovel:
Fat-Shattering of Affine Functions.
Combinatorics, Probability & Computing 13(3): 353-360 (2004) |
| 2003 |
| 13 | | Reid B. Porter,
Damian Eads,
Don R. Hush,
James Theiler:
Weighted Order Statistic Classifiers with Large Rank-Order Margin.
ICML 2003: 600-607 |
| 12 | | Don R. Hush,
Clint Scovel:
Polynomial-Time Decomposition Algorithms for Support Vector Machines.
Machine Learning 51(1): 51-71 (2003) |
| 2002 |
| 11 | EE | Adam Cannon,
J. Mark Ettinger,
Don R. Hush,
Clint Scovel:
Machine Learning with Data Dependent Hypothesis Classes.
Journal of Machine Learning Research 2: 335-358 (2002) |
| 2001 |
| 10 | | Don R. Hush,
Clint Scovel:
On the VC Dimension of Bounded Margin Classifiers.
Machine Learning 45(1): 33-44 (2001) |
| 1999 |
| 9 | | Don R. Hush:
Training a Sigmoidal Node Is Hard.
Neural Computation 11(5): 1249-1260 (1999) |
| 1998 |
| 8 | EE | Don R. Hush,
Bill G. Horne:
Efficient algorithms for function approximation with piecewise linear sigmoidal networks.
IEEE Transactions on Neural Networks 9(6): 1129-1141 (1998) |
| 7 | EE | Timothy Draelos,
Don R. Hush:
A Constructive Neural Network Algorithm for Function Approximation Using Locally Fit Sigmoids.
International Journal on Artificial Intelligence Tools 7(2): 373-398 (1998) |
| 1997 |
| 6 | | Don R. Hush,
Fernando Lozano,
Bill G. Horne:
Function Approximation with the Sweeping Hinge Algorithm.
NIPS 1997 |
| 1996 |
| 5 | EE | Bill G. Horne,
Don R. Hush:
Bounds on the complexity of recurrent neural network implementations of finite state machines.
Neural Networks 9(2): 243-252 (1996) |
| 4 | EE | Mary M. Moya,
Don R. Hush:
Network constraints and multi-objective optimization for one-class classification.
Neural Networks 9(3): 463-474 (1996) |
| 1995 |
| 3 | | Patrick M. Kelly,
T. Michael Cannon,
Don R. Hush:
Query by Image Example: The Comparison Algorithm for Navigating Digital Image Databases (CANDID) Approach.
Storage and Retrieval for Image and Video Databases (SPIE) 1995: 238-248 |
| 1994 |
| 2 | EE | Bill G. Horne,
Don R. Hush:
On the node complexity of neural networks.
Neural Networks 7(9): 1413-1426 (1994) |
| 1993 |
| 1 | EE | Bill G. Horne,
Don R. Hush:
Bounds on the Complexity of Recurrent Neural Network Implementations of Finite State Machines.
NIPS 1993: 359-366 |