dblp.uni-trier.dewww.uni-trier.de

Don R. Hush

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2007
22EENikolas List, Don R. Hush, Clint Scovel, Ingo Steinwart: Gaps in Support Vector Optimization. COLT 2007: 336-348
21EEDon R. Hush, Clint Scovel, Ingo Steinwart: Stability of Unstable Learning Algorithms. Machine Learning 67(3): 197-206 (2007)
2006
20EEIngo Steinwart, Don R. Hush, Clint Scovel: Function Classes That Approximate the Bayes Risk. COLT 2006: 79-93
19EEIngo Steinwart, Don R. Hush, Clint Scovel: An Oracle Inequality for Clipped Regularized Risk Minimizers. NIPS 2006: 1321-1328
18EEIngo Steinwart, Don R. Hush, Clint Scovel: An Explicit Description of the Reproducing Kernel Hilbert Spaces of Gaussian RBF Kernels. IEEE Transactions on Information Theory 52(10): 4635-4643 (2006)
17EEDon R. Hush, Patrick Kelly, Clint Scovel, Ingo Steinwart: QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines. Journal of Machine Learning Research 7: 733-769 (2006)
2005
16EEIngo Steinwart, Don R. Hush, Clint Scovel: A Classification Framework for Anomaly Detection. Journal of Machine Learning Research 6: 211-232 (2005)
2004
15EEIngo Steinwart, Don R. Hush, Clint Scovel: Density Level Detection is Classification. NIPS 2004
14 Don R. Hush, Clint Scovel: Fat-Shattering of Affine Functions. Combinatorics, Probability & Computing 13(3): 353-360 (2004)
2003
13 Reid B. Porter, Damian Eads, Don R. Hush, James Theiler: Weighted Order Statistic Classifiers with Large Rank-Order Margin. ICML 2003: 600-607
12 Don R. Hush, Clint Scovel: Polynomial-Time Decomposition Algorithms for Support Vector Machines. Machine Learning 51(1): 51-71 (2003)
2002
11EEAdam Cannon, J. Mark Ettinger, Don R. Hush, Clint Scovel: Machine Learning with Data Dependent Hypothesis Classes. Journal of Machine Learning Research 2: 335-358 (2002)
2001
10 Don R. Hush, Clint Scovel: On the VC Dimension of Bounded Margin Classifiers. Machine Learning 45(1): 33-44 (2001)
1999
9 Don R. Hush: Training a Sigmoidal Node Is Hard. Neural Computation 11(5): 1249-1260 (1999)
1998
8EEDon R. Hush, Bill G. Horne: Efficient algorithms for function approximation with piecewise linear sigmoidal networks. IEEE Transactions on Neural Networks 9(6): 1129-1141 (1998)
7EETimothy Draelos, Don R. Hush: A Constructive Neural Network Algorithm for Function Approximation Using Locally Fit Sigmoids. International Journal on Artificial Intelligence Tools 7(2): 373-398 (1998)
1997
6 Don R. Hush, Fernando Lozano, Bill G. Horne: Function Approximation with the Sweeping Hinge Algorithm. NIPS 1997
1996
5EEBill G. Horne, Don R. Hush: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks 9(2): 243-252 (1996)
4EEMary M. Moya, Don R. Hush: Network constraints and multi-objective optimization for one-class classification. Neural Networks 9(3): 463-474 (1996)
1995
3 Patrick M. Kelly, T. Michael Cannon, Don R. Hush: Query by Image Example: The Comparison Algorithm for Navigating Digital Image Databases (CANDID) Approach. Storage and Retrieval for Image and Video Databases (SPIE) 1995: 238-248
1994
2EEBill G. Horne, Don R. Hush: On the node complexity of neural networks. Neural Networks 7(9): 1413-1426 (1994)
1993
1EEBill G. Horne, Don R. Hush: Bounds on the Complexity of Recurrent Neural Network Implementations of Finite State Machines. NIPS 1993: 359-366

Coauthor Index

1Adam Cannon [11]
2T. Michael Cannon [3]
3Timothy Draelos [7]
4Damian Eads [13]
5J. Mark Ettinger [11]
6Bill G. Horne [1] [2] [5] [6] [8]
7Patrick Kelly [17]
8Patrick M. Kelly [3]
9Nikolas List [22]
10Fernando Lozano [6]
11Mary M. Moya [4]
12Reid B. Porter [13]
13Clint Scovel [10] [11] [12] [14] [15] [16] [17] [18] [19] [20] [21] [22]
14Ingo Steinwart [15] [16] [17] [18] [19] [20] [21] [22]
15James Theiler [13]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)