2008 | ||
---|---|---|
90 | EE | Kamran Karimi, Howard J. Hamilton: Using Dependence Diagrams to Summarize Decision Rule Sets. Canadian Conference on AI 2008: 163-172 |
89 | EE | Hong Yao, Howard J. Hamilton: Mining functional dependencies from data. Data Min. Knowl. Discov. 16(2): 197-219 (2008) |
2007 | ||
88 | Fabrice Guillet, Howard J. Hamilton: Quality Measures in Data Mining Springer 2007 | |
87 | EE | Liqiang Geng, Howard J. Hamilton, Larry Korba: Expectation Propagation in GenSpace Graphs for Summarization. DaWaK 2007: 449-458 |
86 | Howard J. Hamilton: Interestingness in Data Mining. EGC 2007: 3 | |
85 | EE | Liqiang Geng, Howard J. Hamilton: Choosing the Right Lens: Finding What is Interesting in Data Mining. Quality Measures in Data Mining 2007: 3-24 |
2006 | ||
84 | Shannon Blyth, Howard J. Hamilton: CrowdMixer: Multiple Agent Types in Situation-Based Crowd Simulations. AIIDE 2006: 15-20 | |
83 | EE | Mahesh Shrestha, Howard J. Hamilton, Yiyu Yao, Ken Konkel, Liqiang Geng: The PDD Framework for Detecting Categories of Peculiar Data. ICDM 2006: 562-571 |
82 | EE | Guichong Li, Howard J. Hamilton: Searching for Pattern Rules. ICDM 2006: 933-937 |
81 | EE | Liqiang Geng, Howard J. Hamilton: Interestingness measures for data mining: A survey. ACM Comput. Surv. 38(3): (2006) |
80 | EE | Hong Yao, Howard J. Hamilton: Mining itemset utilities from transaction databases. Data Knowl. Eng. 59(3): 603-626 (2006) |
79 | EE | Howard J. Hamilton, Liqiang Geng, Leah Findlater, Dee Jay Randall: Efficient spatio-temporal data mining with GenSpace graphs. J. Applied Logic 4(2): 192-214 (2006) |
2005 | ||
78 | EE | Xin Wang, Howard J. Hamilton: A Comparative Study of Two Density-Based Spatial Clustering Algorithms for Very Large Datasets. Canadian Conference on AI 2005: 120-132 |
77 | EE | Xin Wang, Howard J. Hamilton: Towards an Ontology-Based Spatial Clustering Framework. Canadian Conference on AI 2005: 205-216 |
76 | EE | Howard J. Hamilton, Kamran Karimi: The TIMERS II Algorithm for the Discovery of Causality. PAKDD 2005: 744-750 |
75 | Hong Yao, Cory J. Butz, Howard J. Hamilton: Causal Discovery. The Data Mining and Knowledge Discovery Handbook 2005: 945-955 | |
74 | EE | Xin Wang, Howard J. Hamilton: Clustering Spatial Data in The Presence of Obstacles. International Journal on Artificial Intelligence Tools 14(1-2): 177-198 (2005) |
73 | EE | Howard J. Hamilton, Demyen Doug: A machine-discovery approach to the evaluation of hashing techniques. J. Exp. Theor. Artif. Intell. 17(1-2): 45-62 (2005) |
2004 | ||
72 | EE | Liqiang Geng, Howard J. Hamilton: Finding Interesting Summaries in GenSpace Graphs Efficiently. Canadian Conference on AI 2004: 89-104 |
71 | Xin Wang, Howard J. Hamilton: Clustering Spatial Data in the Presence of Obstacles. FLAIRS Conference 2004 | |
70 | EE | Xin Wang, Camilo Rostoker, Howard J. Hamilton: Density-Based Spatial Clustering in the Presence of Obstacles and Facilitators. PKDD 2004: 446-458 |
69 | EE | Cory J. Butz, Hong Yao, Howard J. Hamilton: Towards Jointree Propagation with Conditional Probability Distributions. Rough Sets and Current Trends in Computing 2004: 368-377 |
68 | EE | Hong Yao, Howard J. Hamilton, Cory J. Butz: A Foundational Approach to Mining Itemset Utilities from Databases. SDM 2004 |
67 | EE | Guichong Li, Howard J. Hamilton: Basic Association Rules. SDM 2004 |
2003 | ||
66 | EE | Kamran Karimi, Howard J. Hamilton: Discovering Temporal/Causal Rules: A Comparison of Methods. Canadian Conference on AI 2003: 175-189 |
65 | EE | Linhui Jiang, Howard J. Hamilton: Methods for Mining Frequent Sequential Patterns. Canadian Conference on AI 2003: 486-491 |
64 | EE | Kamran Karimi, Howard J. Hamilton: Distinguishing Causal and Acausal Temporal Relations. PAKDD 2003: 234-240 |
63 | EE | Xin Wang, Howard J. Hamilton: DBRS: A Density-Based Spatial Clustering Method with Random Sampling. PAKDD 2003: 563-575 |
62 | EE | Cory J. Butz, Hong Yao, Howard J. Hamilton: A Non-local Coarsening Result in Granular Probabilistic Networks. RSFDGrC 2003: 686-689 |
61 | EE | Howard J. Hamilton, Liqiang Geng, Leah Findlater, Dee Jay Randall: Spatio-Temporal Data Mining with Expected Distribution Domain Generalization Graphs. TIME 2003: 181-191 |
60 | Brock Barber, Howard J. Hamilton: Extracting Share Frequent Itemsets with Infrequent Subsets. Data Min. Knowl. Discov. 7(2): 153-185 (2003) | |
59 | EE | Leah Findlater, Howard J. Hamilton: Iceberg-cube algorithms: An empirical evaluation on synthetic and real data. Intell. Data Anal. 7(2): 77-97 (2003) |
58 | EE | Robert J. Hilderman, Howard J. Hamilton: Measuring the interestingness of discovered knowledge: A principled approach. Intell. Data Anal. 7(4): 347-382 (2003) |
2002 | ||
57 | EE | Kamran Karimi, Howard J. Hamilton: RFCT: An Association-Based Causality Miner. Canadian Conference on AI 2002: 334-338 |
56 | Howard J. Hamilton, Leah Findlater: Looking Backward, Forward, and All Around: Temporal, Spatial, and Spatio-Temporal Data Mining. FLAIRS Conference 2002: 481-485 | |
55 | EE | Liqiang Geng, Howard J. Hamilton: ESRS: A Case Selection Algorithm Using Extended Similarity-based Rough Sets. ICDM 2002: 609-612 |
54 | EE | Hong Yao, Howard J. Hamilton, Cory J. Butz: FD_Mine: Discovering Functional Dependencies in a Database Using Equivalences. ICDM 2002: 729-732 |
53 | EE | Kamran Karimi, Howard J. Hamilton: TimeSleuth: A Tool for Discovering Causal and Temporal Rules. ICTAI 2002: 375-380 |
52 | EE | Kamran Karimi, Howard J. Hamilton: Discovering Temporal Rules from Temporally Ordered Data. IDEAL 2002: 25-30 |
51 | EE | Y. Y. Yao, Howard J. Hamilton, Xuewei Wang: PagePrompter: An Intelligent Web Agent Created Using Data Mining Techniques. Rough Sets and Current Trends in Computing 2002: 506-513 |
50 | EE | Xin Wang, Christine W. Chan, Howard J. Hamilton: Design of knowledge-based systems with the ontology-domain-system approach. SEKE 2002: 233-236 |
2001 | ||
49 | Howard J. Hamilton, Xuewei Wang, Y. Y. Yao: WebAdaptor: Designing Adaptive Web Sites Using Data Mining Techniques. FLAIRS Conference 2001: 128-132 | |
48 | Leah Findlater, Howard J. Hamilton: An Empirical Comparison of Methods for Iceberg-CUBE Construction. FLAIRS Conference 2001: 244-248 | |
47 | EE | Robert J. Hilderman, Howard J. Hamilton: Evaluation of Interestingness Measures for Ranking Discovered Knowledge. PAKDD 2001: 247-259 |
46 | Brock Barber, Howard J. Hamilton: Parametric Algorithms for Mining Share Frequent Itemsets. J. Intell. Inf. Syst. 16(3): 277-293 (2001) | |
2000 | ||
45 | Howard J. Hamilton: Advances in Artificial Intelligence, 13th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 2000, Montréal, Quebec, Canada, May 14-17, 2000, Proceedings Springer 2000 | |
44 | EE | Yang Xiang, Xiaohua Hu, Nick Cercone, Howard J. Hamilton: Learning Pseudo-independent Models: Analytical and Experimental Results. Canadian Conference on AI 2000: 227-239 |
43 | EE | Bradley P. Kram, James A. Hall, Howard J. Hamilton: Support based measures applied to ice hockey scoring summaries. ICTAI 2000: 352- |
42 | EE | Robert J. Hilderman, Howard J. Hamilton: Principles for mining summaries using objective measures of interestingness. ICTAI 2000: 72-81 |
41 | EE | Kamran Karimi, Howard J. Hamilton: Logical Decision Rules: Teaching C4.5 to Speak Prolog. IDEAL 2000: 85-90 |
40 | EE | Kamran Karimi, Howard J. Hamilton: Finding Temporal Relations: Causal Bayesian Networks vs. C4.5. ISMIS 2000: 266-273 |
39 | EE | Brock Barber, Howard J. Hamilton: Parametric Algorithms for Mining Share-Frequent Itemsets. ISMIS 2000: 562-572 |
38 | EE | Brock Barber, Howard J. Hamilton: Algorithms for Mining Share Frequent Itemsets Containing Infrequent Subsets. PKDD 2000: 316-324 |
37 | EE | Robert J. Hilderman, Howard J. Hamilton: Applying Objective Interestingness Measures in Data Mining Systems. PKDD 2000: 432-439 |
36 | EE | Kamran Karimi, Julia A. Johnson, Howard J. Hamilton: A Proposal for Including Behavior in the Process of Object Similarity Assessment with Examples from Artificial Life. Rough Sets and Current Trends in Computing 2000: 642-646 |
35 | EE | Howard J. Hamilton, Dee Jay Randall: Data Mining with Calendar Attributes. TSDM 2000: 117-132 |
1999 | ||
34 | Robert J. Hilderman, Howard J. Hamilton, Brock Barber: Ranking the Interestingness of Summaries from Data Mining Systems. FLAIRS Conference 1999: 100-106 | |
33 | Howard J. Hamilton, Dee Jay Randall: Heuristic Selection of Aggregated Temporal Data for Knowledge Discovery. IEA/AIE 1999: 714-723 | |
32 | Jianna Jian Zhang, Howard J. Hamilton, Nick Cercone: Learning English Grapheme Segmentation Using the Iterated Version Space Algorithm. ISMIS 1999: 420-429 | |
31 | EE | Robert J. Hilderman, Howard J. Hamilton: Heuristic for Ranking the Interestigness of Discovered Knowledge. PAKDD 1999: 204-209 |
30 | Robert J. Hilderman, Howard J. Hamilton: Heuristic Measures of Interestingness. PKDD 1999: 232-241 | |
29 | Dee Jay Randall, Howard J. Hamilton, Robert J. Hilderman: Temporal Generalization with Domain Generalization Graphs. IJPRAI 13(2): 195-217 (1999) | |
28 | Robert J. Hilderman, Howard J. Hamilton, Nick Cercone: Data Mining in Large Databases Using Domain Generalization Graphs. J. Intell. Inf. Syst. 13(3): 195-234 (1999) | |
1998 | ||
27 | Jian Zhang, Howard J. Hamilton: Learning English Syllabification Rules. Canadian Conference on AI 1998: 246-258 | |
26 | Dee Jay Randall, Howard J. Hamilton, Robert J. Hilderman: A Technique for Generalizing Temporal Durations in Relational Databases. FLAIRS Conference 1998: 193-197 | |
25 | Avelino J. Gonzalez, Sylvia Daroszewski, Howard J. Hamilton: Determining the Incremental Worth of Members of an Aggregate Set through Difference-Based Induction. FLAIRS Conference 1998: 245-249 | |
24 | Robert J. Hilderman, Colin L. Carter, Howard J. Hamilton, Nick Cercone: Mining Market Basket Data Using Share Measures and Characterized Itemsets. PAKDD 1998: 159-170 | |
23 | Howard J. Hamilton, Robert J. Hilderman, Liangchun Li, Dee Jay Randall: Generalization Lattices. PKDD 1998: 328-336 | |
22 | EE | Dee Jay Randall, Howard J. Hamilton, Robert J. Hilderman: Generalization for Calendar Attributes using Domain Generalization Graphs. TIME 1998: 177-184 |
21 | EE | Colin L. Carter, Howard J. Hamilton: Efficient Attribute-Oriented Generalization for Knowledge Discovery from Large Databases. IEEE Trans. Knowl. Data Eng. 10(2): 193-208 (1998) |
20 | EE | Robert J. Hilderman, Howard J. Hamilton, Colin L. Carter, Nick Cercone: Mining Association Rules from Market Basket Data using Share Measures and Characterized Itemsets. International Journal on Artificial Intelligence Tools 7(2): 189-220 (1998) |
1997 | ||
19 | Howard J. Hamilton, Ning Shan, Wojciech Ziarko: Machine Learning of Credible Classifications. Australian Joint Conference on Artificial Intelligence 1997: 330-339 | |
18 | Ning Shan, Howard J. Hamilton, Nick Cercone: Inducing and Using Decision Rules in the GRG Knowledge Discovery System. ECML 1997: 234-241 | |
17 | EE | Robert J. Hilderman, Liangchun Li, Howard J. Hamilton: Data Visualization in the DB-Discover System. ICTAI 1997: 474-477 |
16 | Brock Barber, Howard J. Hamilton: A Comparison of Attribute Selection Strategies for Attribute-Oriented Generalization. ISMIS 1997: 106-116 | |
15 | Jian Zhang, Howard J. Hamilton: Learning English Syllabification for Words. ISMIS 1997: 177-186 | |
14 | Colin L. Carter, Howard J. Hamilton, Nick Cercone: Share Based Measures for Itemsets. PKDD 1997: 14-24 | |
13 | Robert J. Hilderman, Howard J. Hamilton, Robert J. Kowalchuk, Nick Cercone: Parallel Knowledge Discovery Using Domain Generalization Graphs. PKDD 1997: 25-35 | |
12 | EE | Robert J. Hilderman, Howard J. Hamilton: A Note on Regeneration with Virtual Copies. IEEE Trans. Software Eng. 23(1): 56-59 (1997) |
1996 | ||
11 | Brock Barber, Howard J. Hamilton: Attribute Selection Strategies fro Attribute-Oriented Generalization. Canadian Conference on AI 1996: 429-441 | |
10 | Howard J. Hamilton, Robert J. Hilderman, Nick Cercone: Attribute-oriented Induction Using Domain Generalization Graphs. ICTAI 1996: 246-253 | |
9 | Ning Shan, Howard J. Hamilton, Nick Cercone: Induction of Classification Rules from Imperfect Data. ISMIS 1996: 118-127 | |
8 | Ning Shan, Wojciech Ziarko, Howard J. Hamilton, Nick Cercone: Discovering Classification Knowledge in Databases Using Rough Sets. KDD 1996: 271-274 | |
7 | Scott D. Goodwin, Howard J. Hamilton: It's About Time: An Introduction to the Special Issue on Temporal Representation and Reasoning. Computational Intelligence 12: 357-358 (1996) | |
1995 | ||
6 | Ning Shan, Wojciech Ziarko, Howard J. Hamilton, Nick Cercone: Using Rough Sets as Tools for Knowledge Discovery. KDD 1995: 263-268 | |
5 | Robert J. Hilderman, Howard J. Hamilton: Performance Analysis of a Regeneration-Based Dynamic Voting Algorithm. SRDS 1995: 196-205 | |
4 | Howard J. Hamilton, David R. Fudger: Estimating DBLEARN's Potential for Knowledge Discovery in Databases. Computational Intelligence 11: 280-296 (1995) | |
1994 | ||
3 | EE | Scott D. Goodwin, Howard J. Hamilton, Eric Neufeld, Abdul Sattar, André Trudel: Belief Revision in a Discrete Temporal Probability-Logic. TIME 1994: 113-120 |
1993 | ||
2 | David R. Fudger, Howard J. Hamilton: A Heuristic for Evaluating Databases for Knowledge Discovery with DBLEARN. RSKD 1993: 44-51 | |
1992 | ||
1 | Howard J. Hamilton, J. Michael Dyck: Using the IIPS Framework to Specify Machine-Discovery Problems. ICCI 1992: 266-269 |