| 2008 |
| 19 | EE | Michal Brylinski,
Jeffrey Skolnick:
Q-Dock: Low-resolution flexible ligand docking with pocket-specific threading restraints.
Journal of Computational Chemistry 29(10): 1574-1588 (2008) |
| 18 | EE | Ryangguk Kim,
Jeffrey Skolnick:
Assessment of programs for ligand binding affinity prediction.
Journal of Computational Chemistry 29(8): 1316-1331 (2008) |
| 17 | EE | Piotr Rotkiewicz,
Jeffrey Skolnick:
Fast procedure for reconstruction of full-atom protein models from reduced representations.
Journal of Computational Chemistry 29(9): 1460-1465 (2008) |
| 2007 |
| 16 | EE | Anna Jagielska,
Jeffrey Skolnick:
Origin of intrinsic 310-helix versus strand stability in homopolypeptides and its implications for the accuracy of the Amber force field.
Journal of Computational Chemistry 28(10): 1648-1657 (2007) |
| 15 | EE | Liliana Wroblewska,
Jeffrey Skolnick:
Can a physics-based, all-atom potential find a protein's native structure among misfolded structures? I. Large scale AMBER benchmarking.
Journal of Computational Chemistry 28(12): 2059-2066 (2007) |
| 2005 |
| 14 | EE | Eckart Bindewald,
Jeffrey Skolnick:
A scoring function for docking ligands to low-resolution protein structures.
Journal of Computational Chemistry 26(4): 374-383 (2005) |
| 2004 |
| 13 | EE | Adrian Arakaki,
Yang Zhang,
Jeffrey Skolnick:
Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment.
Bioinformatics 20(7): 1087-1096 (2004) |
| 12 | EE | Yang Zhang,
Jeffrey Skolnick:
SPICKER: A clustering approach to identify near-native protein folds.
Journal of Computational Chemistry 25(6): 865-871 (2004) |
| 2003 |
| 11 | | Michal Boniecki,
Piotr Rotkiewicz,
Jeffrey Skolnick,
Andrzej Kolinski:
Protein fragment reconstruction using various modeling techniques.
Journal of Computer-Aided Molecular Design 17(11): 725-738 (2003) |
| 2002 |
| 10 | EE | Marek Wojciechowski II,
Jeffrey Skolnick:
Docking of small ligands to low-resolution and theoretically predicted receptor structures.
Journal of Computational Chemistry 23(1): 189-197 (2002) |
| 2001 |
| 9 | | Yury V. Bukhman,
Jeffrey Skolnick:
BioMolQuest: integrated database-based retrieval of protein structural and functional information.
Bioinformatics 17(5): 468-478 (2001) |
| 8 | EE | Marcos R. Betancourt,
Jeffrey Skolnick:
Finding the needle in a haystack: educing native folds from ambiguous ab initio protein structure predictions.
Journal of Computational Chemistry 22(3): 339-353 (2001) |
| 1999 |
| 7 | EE | Jeffrey Skolnick,
Richard H. Lathrop:
Protein Structure Prediction - Session Introduction.
Pacific Symposium on Biocomputing 1999: 480-481 |
| 1998 |
| 6 | EE | Boris A. Reva,
Alexei V. Finkelstein,
Jeffrey Skolnick:
A self-consistent field optimization approach to build energetically and geometrically correct lattice models of proteins.
RECOMB 1998: 214-220 |
| 5 | | Boris A. Reva,
Dmitrii S. Rykunov,
Alexei V. Finkelstein,
Jeffrey Skolnick:
Optimization of Protein Structure on Lattices Using a Self-Consistent Field Approach.
Journal of Computational Biology 5(3): 531-538 (1998) |
| 1997 |
| 4 | EE | Mariusz Milik,
Andrzej Kolinski,
Jeffrey Skolnick:
Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates.
Journal of Computational Chemistry 18(1): 80-85 (1997) |
| 1995 |
| 3 | | Mariusz Milik,
Jeffrey Skolnick:
An Object-Oriented Environment for Artifical Evolution of Protein Sequences: The Example of Rational Design of Transmembrane Sequences.
Evolutionary Programming 1995: 603-613 |
| 1994 |
| 2 | | Adam Godzik,
Jeffrey Skolnick:
Flexible algorithm for direct multiple alignment of protein structures and sequences.
Computer Applications in the Biosciences 10(6): 587-596 (1994) |
| 1993 |
| 1 | | Adam Godzik,
Andrzej Kolinski,
Jeffrey Skolnick:
De novo and inverse folding predictions of protein structure and dynamics.
Journal of Computer-Aided Molecular Design 7(4): 397-438 (1993) |