dblp.uni-trier.dewww.uni-trier.de

Marc Sebban

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2008
44EELaurent Boyer, Yann Esposito, Amaury Habrard, José Oncina, Marc Sebban: SEDiL: Software for Edit Distance Learning. ECML/PKDD (2) 2008: 672-677
43EEAmaury Habrard, José Manuel Iñesta Quereda, David Rizo, Marc Sebban: Melody Recognition with Learned Edit Distances. SSPR/SPR 2008: 86-96
42EEMarc Bernard, Laurent Boyer, Amaury Habrard, Marc Sebban: Learning probabilistic models of tree edit distance. Pattern Recognition 41(8): 2611-2629 (2008)
2007
41EELaurent Boyer, Amaury Habrard, Marc Sebban: Learning Metrics Between Tree Structured Data: Application to Image Recognition. ECML 2007: 54-66
40EEStéphanie Jacquemont, François Jacquenet, Marc Sebban: Correct your text with Google. Web Intelligence 2007: 170-176
2006
39EEMarc Bernard, Amaury Habrard, Marc Sebban: Learning Stochastic Tree Edit Distance. ECML 2006: 42-53
38EEMarc Bernard, Jean-Christophe Janodet, Marc Sebban: A Discriminative Model of Stochastic Edit Distance in the Form of a Conditional Transducer. ICGI 2006: 240-252
37EEStéphanie Jacquemont, François Jacquenet, Marc Sebban: Sequence Mining Without Sequences: A New Way for Privacy Preserving. ICTAI 2006: 347-354
36EEJosé Oncina, Marc Sebban: Using Learned Conditional Distributions as Edit Distance. SSPR/SPR 2006: 403-411
35EEJosé Oncina, Marc Sebban: Learning stochastic edit distance: Application in handwritten character recognition. Pattern Recognition 39(9): 1575-1587 (2006)
2005
34 Stéphanie Jacquemont, François Jacquenet, Marc Sebban: Constrained Sequence Mining based on Probabilistic Finite State Automata. CAP 2005: 15-30
33 Amaury Habrard, Marc Bernard, Marc Sebban: Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms. FLAIRS Conference 2005: 493-498
32EEAmaury Habrard, Marc Bernard, Marc Sebban: Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data. Fundam. Inform. 66(1-2): 103-130 (2005)
31EEJean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier: Adaptation du boosting à l'inférence grammaticale via l'utilisation d'un oracle de confiance. Revue d'Intelligence Artificielle 19(4-5): 713-740 (2005)
2004
30EEJean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier: Boosting grammatical inference with confidence oracles. ICML 2004
29EEFrançois Jacquenet, Marc Sebban, Georges Valétudie: Mining Decision Rules from Deterministic Finite Automata. ICTAI 2004: 362-367
2003
28EEAmaury Habrard, Marc Bernard, Marc Sebban: Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference. ECML 2003: 169-180
27EEMarc Sebban, Henri-Maxime Suchier: On Boosting Improvement: Error Reduction and Convergence Speed-Up. ECML 2003: 349-360
26 Marc Sebban, Jean-Christophe Janodet: On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data. ICML 2003: 688-695
25EERichard Nock, Marc Sebban, Didier Bernard: A Simple Locally Adaptive Nearest Neighbor Rule With Application To Pollution Forecasting. IJPRAI 17(8): 1369-1382 (2003)
2002
24EEFranck Thollard, Marc Sebban, Philippe Ézéquel: Boosting Density Function Estimators. ECML 2002: 431-443
23 Marc Sebban, I. Mokrousov, N. Rastogi, C. Sola: A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis. Bioinformatics 18(2): 235-243 (2002)
22EEMarc Sebban, Richard Nock, Stéphane Lallich: Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problem. Journal of Machine Learning Research 3: 863-885 (2002)
21EEMarc Sebban, Richard Nock: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35(4): 835-846 (2002)
2001
20 Marc Sebban, Richard Nock: Improvement of Nearest-Neighbor Classifiers via Support Vector Machines. FLAIRS Conference 2001: 113-117
19 Marc Sebban, Richard Nock, Stéphane Lallich: Boosting Neighborhood-Based Classifiers. ICML 2001: 505-512
18 Richard Nock, Marc Sebban: Advances in Adaptive Prototype Weighting and Selection. International Journal on Artificial Intelligence Tools 10(1-2): 137-155 (2001)
17 Richard Nock, Marc Sebban: An improved bound on the finite-sample risk of the nearest neighbor rule. Pattern Recognition Letters 22(3/4): 407-412 (2001)
16 Richard Nock, Marc Sebban: A Bayesian boosting theorem. Pattern Recognition Letters 22(3/4): 413-419 (2001)
2000
15EERichard Nock, Marc Sebban: Sharper Bounds for the Hardness of Prototype and Feature Selection. ALT 2000: 224-237
14EEMarc Sebban, Richard Nock: Identifying and Eliminating Irrelevant Instances Using Information Theory. Canadian Conference on AI 2000: 90-101
13EERichard Nock, Marc Sebban, Pascal Jabby: A Symmetric Nearest Neighbor Learning Rule. EWCBR 2000: 222-233
12 Richard Nock, Marc Sebban: A Boosting-Based Prototype Weighting and Selection Scheme. FLAIRS Conference 2000: 71-75
11 Marc Sebban, Richard Nock: Instance Pruning as an Information Preserving Problem. ICML 2000: 855-862
10EEMarc Sebban, Richard Nock: Contribution of Dataset Reduction Techniques to Tree-Simplification and Knowledge Discovery. PKDD 2000: 44-53
9EEMarc Sebban, Richard Nock: Combining Feature and Example Pruning by Uncertainty Minimization. UAI 2000: 533-540
8EEMarc Sebban, Richard Nock, Jean-Hugues Chauchat, Ricco Rakotomalala: Impact of learning set quality and size on decision tree performances. Int. J. Comput. Syst. Signal 1(1): 85-105 (2000)
1999
7EEMarc Sebban, Gilles Richard: From Theoretical Learnability to Statistical Measures of the Learnable. IDA 1999: 3-14
6 Marc Sebban, Djamel A. Zighed, S. Di Palma: Selection and Statistical Validation of Features and Prototypes. PKDD 1999: 184-192
5 Marc Sebban, Richard Nock: Contribution of Boosting in Wrapper Models. PKDD 1999: 214-222
4 Richard Nock, Marc Sebban, Pascal Jappy: Experiments on a Representation-Independent "Top-Down and Prune" Induction Scheme. PKDD 1999: 223-231
1998
3 Marc Sebban, Anne M. Landraud: Strings Clustering and Statistical Validation of Clusters. Canadian Conference on AI 1998: 298-309
2 Marc Sebban: Prototype Selection from Homogeneous Subsets by a Monte Carlo Sampling. FLAIRS Conference 1998: 250-253
1996
1 Sabine Rabaséda, Ricco Rakotomalala, Marc Sebban: A Comparison of Some Contextual Discretization Methods. Inf. Sci. 92(1-4): 137-157 (1996)

Coauthor Index

1Didier Bernard [25]
2Marc Bernard [28] [32] [33] [38] [39] [42]
3Laurent Boyer [41] [42] [44]
4Jean-Hugues Chauchat [8]
5Yann Esposito [44]
6Philippe Ézéquel [24]
7Amaury Habrard [28] [32] [33] [39] [41] [42] [43] [44]
8Pascal Jabby [13]
9Stéphanie Jacquemont [34] [37] [40]
10François Jacquenet [29] [34] [37] [40]
11Jean-Christophe Janodet [26] [30] [31] [38]
12Pascal Jappy [4]
13Stéphane Lallich [19] [22]
14Anne M. Landraud [3]
15I. Mokrousov [23]
16Richard Nock [4] [5] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [25] [30] [31]
17José Oncina [35] [36] [44]
18S. Di Palma [6]
19José Manuel Iñesta Quereda [43]
20Sabine Loudcher Rabaséda (Sabine Rabaséda) [1]
21Ricco Rakotomalala [1] [8]
22N. Rastogi [23]
23Gilles Richard [7]
24David Rizo [43]
25C. Sola [23]
26Henri-Maxime Suchier [27] [30] [31]
27Franck Thollard [24]
28Georges Valétudie [29]
29Djamel A. Zighed (Djamel Abdelkader Zighed) [6]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)