2008 |
44 | EE | Laurent Boyer,
Yann Esposito,
Amaury Habrard,
José Oncina,
Marc Sebban:
SEDiL: Software for Edit Distance Learning.
ECML/PKDD (2) 2008: 672-677 |
43 | EE | Amaury Habrard,
José Manuel Iñesta Quereda,
David Rizo,
Marc Sebban:
Melody Recognition with Learned Edit Distances.
SSPR/SPR 2008: 86-96 |
42 | EE | Marc Bernard,
Laurent Boyer,
Amaury Habrard,
Marc Sebban:
Learning probabilistic models of tree edit distance.
Pattern Recognition 41(8): 2611-2629 (2008) |
2007 |
41 | EE | Laurent Boyer,
Amaury Habrard,
Marc Sebban:
Learning Metrics Between Tree Structured Data: Application to Image Recognition.
ECML 2007: 54-66 |
40 | EE | Stéphanie Jacquemont,
François Jacquenet,
Marc Sebban:
Correct your text with Google.
Web Intelligence 2007: 170-176 |
2006 |
39 | EE | Marc Bernard,
Amaury Habrard,
Marc Sebban:
Learning Stochastic Tree Edit Distance.
ECML 2006: 42-53 |
38 | EE | Marc Bernard,
Jean-Christophe Janodet,
Marc Sebban:
A Discriminative Model of Stochastic Edit Distance in the Form of a Conditional Transducer.
ICGI 2006: 240-252 |
37 | EE | Stéphanie Jacquemont,
François Jacquenet,
Marc Sebban:
Sequence Mining Without Sequences: A New Way for Privacy Preserving.
ICTAI 2006: 347-354 |
36 | EE | José Oncina,
Marc Sebban:
Using Learned Conditional Distributions as Edit Distance.
SSPR/SPR 2006: 403-411 |
35 | EE | José Oncina,
Marc Sebban:
Learning stochastic edit distance: Application in handwritten character recognition.
Pattern Recognition 39(9): 1575-1587 (2006) |
2005 |
34 | | Stéphanie Jacquemont,
François Jacquenet,
Marc Sebban:
Constrained Sequence Mining based on Probabilistic Finite State Automata.
CAP 2005: 15-30 |
33 | | Amaury Habrard,
Marc Bernard,
Marc Sebban:
Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms.
FLAIRS Conference 2005: 493-498 |
32 | EE | Amaury Habrard,
Marc Bernard,
Marc Sebban:
Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data.
Fundam. Inform. 66(1-2): 103-130 (2005) |
31 | EE | Jean-Christophe Janodet,
Richard Nock,
Marc Sebban,
Henri-Maxime Suchier:
Adaptation du boosting à l'inférence grammaticale via l'utilisation d'un oracle de confiance.
Revue d'Intelligence Artificielle 19(4-5): 713-740 (2005) |
2004 |
30 | EE | Jean-Christophe Janodet,
Richard Nock,
Marc Sebban,
Henri-Maxime Suchier:
Boosting grammatical inference with confidence oracles.
ICML 2004 |
29 | EE | François Jacquenet,
Marc Sebban,
Georges Valétudie:
Mining Decision Rules from Deterministic Finite Automata.
ICTAI 2004: 362-367 |
2003 |
28 | EE | Amaury Habrard,
Marc Bernard,
Marc Sebban:
Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference.
ECML 2003: 169-180 |
27 | EE | Marc Sebban,
Henri-Maxime Suchier:
On Boosting Improvement: Error Reduction and Convergence Speed-Up.
ECML 2003: 349-360 |
26 | | Marc Sebban,
Jean-Christophe Janodet:
On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data.
ICML 2003: 688-695 |
25 | EE | Richard Nock,
Marc Sebban,
Didier Bernard:
A Simple Locally Adaptive Nearest Neighbor Rule With Application To Pollution Forecasting.
IJPRAI 17(8): 1369-1382 (2003) |
2002 |
24 | EE | Franck Thollard,
Marc Sebban,
Philippe Ézéquel:
Boosting Density Function Estimators.
ECML 2002: 431-443 |
23 | | Marc Sebban,
I. Mokrousov,
N. Rastogi,
C. Sola:
A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis.
Bioinformatics 18(2): 235-243 (2002) |
22 | EE | Marc Sebban,
Richard Nock,
Stéphane Lallich:
Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problem.
Journal of Machine Learning Research 3: 863-885 (2002) |
21 | EE | Marc Sebban,
Richard Nock:
A hybrid filter/wrapper approach of feature selection using information theory.
Pattern Recognition 35(4): 835-846 (2002) |
2001 |
20 | | Marc Sebban,
Richard Nock:
Improvement of Nearest-Neighbor Classifiers via Support Vector Machines.
FLAIRS Conference 2001: 113-117 |
19 | | Marc Sebban,
Richard Nock,
Stéphane Lallich:
Boosting Neighborhood-Based Classifiers.
ICML 2001: 505-512 |
18 | | Richard Nock,
Marc Sebban:
Advances in Adaptive Prototype Weighting and Selection.
International Journal on Artificial Intelligence Tools 10(1-2): 137-155 (2001) |
17 | | Richard Nock,
Marc Sebban:
An improved bound on the finite-sample risk of the nearest neighbor rule.
Pattern Recognition Letters 22(3/4): 407-412 (2001) |
16 | | Richard Nock,
Marc Sebban:
A Bayesian boosting theorem.
Pattern Recognition Letters 22(3/4): 413-419 (2001) |
2000 |
15 | EE | Richard Nock,
Marc Sebban:
Sharper Bounds for the Hardness of Prototype and Feature Selection.
ALT 2000: 224-237 |
14 | EE | Marc Sebban,
Richard Nock:
Identifying and Eliminating Irrelevant Instances Using Information Theory.
Canadian Conference on AI 2000: 90-101 |
13 | EE | Richard Nock,
Marc Sebban,
Pascal Jabby:
A Symmetric Nearest Neighbor Learning Rule.
EWCBR 2000: 222-233 |
12 | | Richard Nock,
Marc Sebban:
A Boosting-Based Prototype Weighting and Selection Scheme.
FLAIRS Conference 2000: 71-75 |
11 | | Marc Sebban,
Richard Nock:
Instance Pruning as an Information Preserving Problem.
ICML 2000: 855-862 |
10 | EE | Marc Sebban,
Richard Nock:
Contribution of Dataset Reduction Techniques to Tree-Simplification and Knowledge Discovery.
PKDD 2000: 44-53 |
9 | EE | Marc Sebban,
Richard Nock:
Combining Feature and Example Pruning by Uncertainty Minimization.
UAI 2000: 533-540 |
8 | EE | Marc Sebban,
Richard Nock,
Jean-Hugues Chauchat,
Ricco Rakotomalala:
Impact of learning set quality and size on decision tree performances.
Int. J. Comput. Syst. Signal 1(1): 85-105 (2000) |
1999 |
7 | EE | Marc Sebban,
Gilles Richard:
From Theoretical Learnability to Statistical Measures of the Learnable.
IDA 1999: 3-14 |
6 | | Marc Sebban,
Djamel A. Zighed,
S. Di Palma:
Selection and Statistical Validation of Features and Prototypes.
PKDD 1999: 184-192 |
5 | | Marc Sebban,
Richard Nock:
Contribution of Boosting in Wrapper Models.
PKDD 1999: 214-222 |
4 | | Richard Nock,
Marc Sebban,
Pascal Jappy:
Experiments on a Representation-Independent "Top-Down and Prune" Induction Scheme.
PKDD 1999: 223-231 |
1998 |
3 | | Marc Sebban,
Anne M. Landraud:
Strings Clustering and Statistical Validation of Clusters.
Canadian Conference on AI 1998: 298-309 |
2 | | Marc Sebban:
Prototype Selection from Homogeneous Subsets by a Monte Carlo Sampling.
FLAIRS Conference 1998: 250-253 |
1996 |
1 | | Sabine Rabaséda,
Ricco Rakotomalala,
Marc Sebban:
A Comparison of Some Contextual Discretization Methods.
Inf. Sci. 92(1-4): 137-157 (1996) |