2008 |
27 | EE | Alois Panholzer:
A distributional study of the path edge-covering numbers for random trees.
Discrete Applied Mathematics 156(7): 1036-1052 (2008) |
26 | EE | Markus Kuba,
Alois Panholzer:
On edge-weighted recursive trees and inversions in random permutations.
Discrete Mathematics 308(4): 529-540 (2008) |
25 | EE | Qunqiang Feng,
Hosam M. Mahmoud,
Alois Panholzer:
Phase Changes in Subtree Varieties in Random Recursive and Binary Search Trees.
SIAM J. Discrete Math. 22(1): 160-184 (2008) |
2007 |
24 | EE | Markus Kuba,
Alois Panholzer:
On the degree distribution of the nodes in increasing trees.
J. Comb. Theory, Ser. A 114(4): 597-618 (2007) |
23 | EE | Alois Panholzer,
Helmut Prodinger:
Level of nodes in increasing trees revisited.
Random Struct. Algorithms 31(2): 203-226 (2007) |
22 | EE | Markus Kuba,
Alois Panholzer:
The left-right-imbalance of binary search trees.
Theor. Comput. Sci. 370(1-3): 265-278 (2007) |
2006 |
21 | EE | James Allen Fill,
Nevin Kapur,
Alois Panholzer:
Destruction of Very Simple Trees.
Algorithmica 46(3-4): 345-366 (2006) |
20 | EE | Markus Kuba,
Alois Panholzer:
Descendants in Increasing Trees.
Electr. J. Comb. 13(1): (2006) |
2005 |
19 | EE | Alois Panholzer:
The distribution of the path edge-covering numbers for random trees.
Electronic Notes in Discrete Mathematics 19: 163-169 (2005) |
18 | | Alois Panholzer:
Gröbner Bases and the Defining Polynomial of a Context-Free Grammar Generating Function.
Journal of Automata, Languages and Combinatorics 10(1): 79-97 (2005) |
17 | EE | Alois Panholzer:
The climbing depth of random trees.
Random Struct. Algorithms 26(1-2): 84-109 (2005) |
2004 |
16 | EE | Kate Morris,
Alois Panholzer,
Helmut Prodinger:
On Some Parameters in Heap Ordered Trees.
Combinatorics, Probability & Computing 13(4-5): 677-696 (2004) |
15 | EE | Alois Panholzer:
Distribution of the Steiner Distance in Generalized M-ary Search Trees.
Combinatorics, Probability & Computing 13(4-5): 717-733 (2004) |
14 | EE | Alois Panholzer,
Helmut Prodinger:
Analysis of some statistics for increasing tree families.
Discrete Mathematics & Theoretical Computer Science 6(2): 437-460 (2004) |
13 | EE | Alois Panholzer,
Helmut Prodinger,
Marko Riedel:
Permuting in place: analysis of two stopping rules.
J. Algorithms 51(2): 170-184 (2004) |
12 | EE | Alois Panholzer:
The distribution of the size of the ancestor-tree and of the induced spanning subtree for random trees.
Random Struct. Algorithms 25(2): 179-207 (2004) |
2003 |
11 | EE | Alois Panholzer:
Non-crossing trees revisited: cutting down and spanning subtrees.
DRW 2003: 265-276 |
10 | | Alois Panholzer:
The Height Distribution of Nodes in Non-Crossing Trees.
Ars Comb. 69: (2003) |
9 | EE | Alois Panholzer:
Analysis of multiple quickselect variants.
Theor. Comput. Sci. 302(1-3): 45-91 (2003) |
2002 |
8 | EE | Alois Panholzer,
Helmut Prodinger:
Bijections for ternary trees and non-crossing trees.
Discrete Mathematics 250(1-3): 181-195 (2002) |
7 | | Jean-François Marckert,
Alois Panholzer:
Noncrossing trees are almost conditioned Galton-Watson trees.
Random Struct. Algorithms 20(1): 115-125 (2002) |
2001 |
6 | EE | Conrado Martinez,
Alois Panholzer,
Helmut Prodinger:
Partial Match Queries in Relaxed Multidimensional Search Trees.
Algorithmica 29(1): 181-204 (2001) |
1998 |
5 | EE | Alois Panholzer,
Helmut Prodinger:
Average-Case Analysis of Priority Trees: A Structure for Priority Queue Administration.
Algorithmica 22(4): 600-630 (1998) |
4 | | Alois Panholzer,
Helmut Prodinger:
Towards a More Precise Analysis of an Algorithm to Generate Binary Trees: A Tutorial.
Comput. J. 41(3): 201-204 (1998) |
3 | EE | Conrado Martinez,
Alois Panholzer,
Helmut Prodinger:
On the Number of Descendants and Ascendants in Random Search Trees.
Electr. J. Comb. 5: (1998) |
2 | | Alois Panholzer,
Helmut Prodinger:
A generating functions approach for the analysis of grand averages for multiple QUICKSELECT.
Random Struct. Algorithms 13(3-4): 189-209 (1998) |
1997 |
1 | EE | Alois Panholzer,
Helmut Prodinger:
Descendants and ascendants in binary trees.
Discrete Mathematics & Theoretical Computer Science 1(2): 247-266 (1997) |