| 2008 |
| 46 | | Karl Tuyls,
Ann Nowé,
Zahia Guessoum,
Daniel Kudenko:
Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning, 5th, 6th, and 7th European Symposium, ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems, Revised Selected Papers
Springer 2008 |
| 45 | EE | Marek Grzes,
Daniel Kudenko:
Robustness Analysis of SARSA(lambda): Different Models of Reward and Initialisation.
AIMSA 2008: 144-156 |
| 44 | EE | Arturo Servin,
Daniel Kudenko:
Multi-Agent Reinforcement Learning for Intrusion Detection: A case study and evaluation.
ECAI 2008: 873-874 |
| 43 | EE | Marek Grzes,
Daniel Kudenko:
An Empirical Analysis of the Impact of Prioritised Sweeping on the DynaQ's Performance.
ICAISC 2008: 1041-1051 |
| 42 | EE | Marek Grzes,
Daniel Kudenko:
Multigrid Reinforcement Learning with Reward Shaping.
ICANN (1) 2008: 357-366 |
| 41 | EE | María Arinbjarnar,
Daniel Kudenko:
Schemas in Directed Emergent Drama.
ICIDS 2008: 180-185 |
| 40 | EE | Heather Barber,
Daniel Kudenko:
Generation of Dilemma-Based Narratives: Method and Turing Test Evaluation.
ICIDS 2008: 214-217 |
| 39 | EE | Arturo Servin,
Daniel Kudenko:
Multi-Agent Reinforcement Learning for Intrusion Detection: A Case Study and Evaluation.
MATES 2008: 159-170 |
| 38 | EE | Enda Ridge,
Daniel Kudenko:
Determining Whether a Problem Characteristic Affects Heuristic Performance.
Recent Advances in Evolutionary Computation for Combinatorial Optimization 2008: 21-35 |
| 2007 |
| 37 | EE | Matthew Grounds,
Daniel Kudenko:
Parallel reinforcement learning with linear function approximation.
AAMAS 2007: 45 |
| 36 | | Heather Barber,
Daniel Kudenko:
Dynamic Generation of Dilemma-based Interactive Narratives.
AIIDE 2007: 2-7 |
| 35 | EE | Arturo Servin,
Daniel Kudenko:
Multi-agent Reinforcement Learning for Intrusion Detection.
Adaptive Agents and Multi-Agents Systems 2007: 211-223 |
| 34 | EE | Matthew Grounds,
Daniel Kudenko:
Parallel Reinforcement Learning with Linear Function Approximation.
Adaptive Agents and Multi-Agents Systems 2007: 60-74 |
| 33 | EE | Matthew Grounds,
Daniel Kudenko:
Combining Reinforcement Learning with Symbolic Planning.
Adaptive Agents and Multi-Agents Systems 2007: 75-86 |
| 32 | EE | Enda Ridge,
Daniel Kudenko:
An Analysis of Problem Difficulty for a Class of Optimisation Heuristics.
EvoCOP 2007: 198-209 |
| 31 | EE | Enda Ridge,
Daniel Kudenko:
Analyzing heuristic performance with response surface models: prediction, optimization and robustness.
GECCO 2007: 150-157 |
| 30 | EE | Enda Ridge,
Daniel Kudenko:
Screening the parameters affecting heuristic performance.
GECCO 2007: 180 |
| 29 | EE | I-Hsien Ting,
Chris Kimble,
Daniel Kudenko:
Applying Web Usage Mining Techniques to Discover Potential Browsing Problems of Users.
ICALT 2007: 929-930 |
| 28 | EE | I-Hsien Ting,
Lillian Clark,
Chris Kimble,
Daniel Kudenko,
Peter Wright:
APD-A Tool for Identifying Behavioural Patterns Automatically from Clickstream Data.
KES (2) 2007: 66-73 |
| 27 | EE | Enda Ridge,
Daniel Kudenko:
Tuning the Performance of the MMAS Heuristic.
SLS 2007: 46-60 |
| 26 | EE | Heather Barber,
Daniel Kudenko:
Adaptive Generation of Dilemma-based Interactive Narratives.
Advanced Intelligent Paradigms in Computer Games 2007: 19-37 |
| 25 | EE | Enda Ridge,
Edward Curry,
Daniel Kudenko,
Dimitar Kazakov:
Special issue on Nature-inspired systems for parallel, asynchronous and decentralised environments.
Multiagent and Grid Systems 3(1): 1-2 (2007) |
| 2006 |
| 24 | EE | Zoë P. Lock,
Daniel Kudenko:
Interactions Between Stereotypes.
AH 2006: 172-181 |
| 2005 |
| 23 | | Daniel Kudenko,
Dimitar Kazakov,
Eduardo Alonso:
Adaptive Agents and Multi-Agent Systems II: Adaptation and Multi-Agent Learning
Springer 2005 |
| 22 | EE | I-Hsien Ting,
Chris Kimble,
Daniel Kudenko:
A Pattern Restore Method for Restoring Missing Patterns in Server Side Clickstream Data.
APWeb 2005: 501-512 |
| 21 | EE | Spiros Kapetanakis,
Daniel Kudenko,
Malcolm J. A. Strens:
Learning to Coordinate Using Commitment Sequences in Cooperative Multi-agent Systems.
Adaptive Agents and Multi-Agent Systems 2005: 106-118 |
| 20 | EE | Spiros Kapetanakis,
Daniel Kudenko:
Reinforcement Learning of Coordination in Heterogeneous Cooperative Multi-agent Systems.
Adaptive Agents and Multi-Agent Systems 2005: 119-131 |
| 19 | EE | Martin Carpenter,
Daniel Kudenko:
Baselines for Joint-Action Reinforcement Learning of Coordination in Cooperative Multi-agent Systems.
Adaptive Agents and Multi-Agent Systems 2005: 55-72 |
| 18 | EE | Enda Ridge,
Daniel Kudenko,
Dimitar Kazakov,
Edward Curry:
Moving Nature-Inspired Algorithms to Parallel, Asynchronous and Decentralised Environments.
SOAS 2005: 35-49 |
| 17 | EE | I-Hsien Ting,
Chris Kimble,
Daniel Kudenko:
UBB Mining: Finding Unexpected Browsing Behaviour in Clickstream Data to Improve a Web Site's Design.
Web Intelligence 2005: 179-185 |
| 2004 |
| 16 | EE | Spiros Kapetanakis,
Daniel Kudenko:
Reinforcement Learning of Coordination in Heterogeneous Cooperative Multi-Agent Systems.
AAMAS 2004: 1258-1259 |
| 15 | | Thomas Walker,
Daniel Kudenko,
Malcolm J. A. Strens:
Algorithms for Distributed Exploration.
ECAI 2004: 84-88 |
| 2003 |
| 14 | | Eduardo Alonso,
Daniel Kudenko,
Dimitar Kazakov:
Adaptive Agents and Multi-Agent Systems: Adaptation and Multi-Agent Learning
Springer 2003 |
| 13 | EE | Daniel Kudenko,
Mathias Bauer,
Dietmar Dengler:
Group Decision Making through Mediated Discussions.
User Modeling 2003: 238-247 |
| 2002 |
| 12 | | Spiros Kapetanakis,
Daniel Kudenko:
Reinforcement Learning of Coordination in Cooperative Multi-Agent Systems.
AAAI/IAAI 2002: 326-331 |
| 11 | EE | Spiros Kapetanakis,
Daniel Kudenko,
Malcolm J. A. Strens:
Reinforcement Learning Approaches to Coordination in Cooperative Multi-agent Systems.
Adaptive Agents and Multi-Agents Systems 2002: 18-32 |
| 2001 |
| 10 | EE | Dimitar Kazakov,
Daniel Kudenko:
Machine Learning and Inductive Logic Programming for Multi-agent Systems.
EASSS 2001: 246-272 |
| 9 | EE | Eduardo Alonso,
Daniel Kudenko:
Sistemas Logicos de Multiples Agentes: Arquitectura e Implementacion en Simuladores de Conflictos.
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 13: 85-93 (2001) |
| 2000 |
| 8 | EE | Eduardo Alonso,
Daniel Kudenko:
Machine Learning for Logic-Based Multi-agent Systems.
FAABS 2000: 306-307 |
| 1999 |
| 7 | EE | Daniel Kudenko,
Haym Hirsh:
Feature-Based Learners for Description Logics.
Description Logics 1999 |
| 1998 |
| 6 | | Daniel Kudenko,
Haym Hirsh:
Feature Generation for Sequence Categorization.
AAAI/IAAI 1998: 733-738 |
| 1997 |
| 5 | | Haym Hirsh,
Daniel Kudenko:
Representing Sequences in Description Logics.
AAAI/IAAI 1997: 384-389 |
| 4 | | William W. Cohen,
Daniel Kudenko:
Transferring and Retraining Learned Information Filters.
AAAI/IAAI 1997: 583-590 |
| 1996 |
| 3 | | Daniel Kudenko,
Haym Hirsh:
Representing Sequences in Description Logics Using Suffix Trees.
Description Logics 1996: 141-145 |
| 1994 |
| 2 | | Jochen Heinsohn,
Daniel Kudenko,
Bernhard Nebel,
Hans-Jürgen Profitlich:
An Empirical Analysis of Terminological Representation Systems.
Artif. Intell. 68(2): 367-397 (1994) |
| 1992 |
| 1 | | Jochen Heinsohn,
Daniel Kudenko,
Bernhard Nebel,
Hans-Jürgen Profitlich:
An Empirical Analysis of Terminological Representation Systems.
AAAI 1992: 767-773 |