2008 |
24 | EE | Marianna Beiderman,
Terence Tam,
Alexander Fish,
Graham A. Jullien,
Orly Yadid-Pecht:
A Low noise CMOS image sensor with an emission filter for fluorescence applications.
ISCAS 2008: 1100-1103 |
23 | EE | Alexander Fish,
Orly Yadid-Pecht:
Low-power "Smart" CMOS image sensors.
ISCAS 2008: 1408-1411 |
22 | EE | Adam Teman,
Sagi Fisher,
Liby Sudakov,
Alexander Fish,
Orly Yadid-Pecht:
Autonomous CMOS image sensor for real time target detection and tracking.
ISCAS 2008: 2138-2141 |
2007 |
21 | EE | Alexander Fish,
Tomer Rothschild,
Avichay Hodes,
Yonatan Shoshan,
Orly Yadid-Pecht:
Low Power CMOS Image Sensors Employing Adaptive Bulk Biasing Control (AB2C) Approach.
ISCAS 2007: 2834-2837 |
20 | EE | Terence Tam,
Graham A. Jullien,
Orly Yadid-Pecht:
A CMOS Contact Imager for Cell Detection in Bio-Sensing Applications.
ISCAS 2007: 813-816 |
2006 |
19 | EE | I. Shcherback,
R. Segal,
Alexander Belenky,
Orly Yadid-Pecht:
Two-dimensional CMOS image sensor characterization.
ISCAS 2006 |
2005 |
18 | EE | J. L. D. Gonzalez,
D. Sadowski,
Karan V. I. S. Kaler,
Martin P. Mintchev,
Orly Yadid-Pecht:
A CMOS imager for light blobs detection and processing.
ISCAS (1) 2005: 568-571 |
17 | EE | Alexander Fish,
Evgeny Avner,
Orly Yadid-Pecht:
Low-power global/rolling shutter image sensors in silicon on sapphire technology.
ISCAS (1) 2005: 580-583 |
16 | EE | Vadim Alexander Milirud,
Leonid Fleshel,
Wenjing Zhang,
Graham A. Jullien,
Orly Yadid-Pecht:
A wide dynamic range CMOS active pixel sensor with frame difference.
ISCAS (1) 2005: 588-591 |
15 | EE | Alexander Fish,
Shy Hamami,
Orly Yadid-Pecht:
Self-powered active pixel sensors for ultra low-power applications.
ISCAS (5) 2005: 5310-5313 |
14 | EE | Graham R. Nelson,
Graham A. Jullien,
Orly Yadid-Pecht:
CMOS image sensor with watermarking capabilities.
ISCAS (5) 2005: 5326-5329 |
13 | EE | Boris Maliatski,
Orly Yadid-Pecht:
Hardware-driven adaptive k-means clustering for real-time video imaging.
IEEE Trans. Circuits Syst. Video Techn. 15(1): 164-166 (2005) |
12 | EE | Evgeny Artyomov,
Y. Rivenson,
G. Levi,
Orly Yadid-Pecht:
Morton (Z) scan based real-time variable resolution CMOS image sensor.
IEEE Trans. Circuits Syst. Video Techn. 15(7): 947-952 (2005) |
11 | EE | Evgeny Artyomov,
Orly Yadid-Pecht:
Modified high-order neural network for invariant pattern recognition.
Pattern Recognition Letters 26(6): 843-851 (2005) |
2004 |
10 | | Evgeny Artyomov,
Orly Yadid-Pecht:
Adaptive multiple resolution CMOS active pixel sensor.
ISCAS (4) 2004: 836-839 |
9 | | Alexander Fish,
Vadim Milrud,
Orly Yadid-Pecht:
High speed and high resolution current winner-take-all circuit in conjunction with adaptive thresholding.
ISCAS (4) 2004: 852-855 |
8 | | Shy Hamami,
Leonid Fleshel,
Orly Yadid-Pecht:
CMOS APS imager employing 3.3 V 12 bit 6.3 MS/s pipelined ADC.
ISCAS (4) 2004: 960-963 |
7 | | Alexander Belenky,
Alexander Fish,
Shy Hamami,
Vadim Milrud,
Orly Yadid-Pecht:
Widening the dynamic range of the readout integration circuit for uncooled microbolometer infrared sensors.
ISCAS (5) 2004: 600-603 |
6 | EE | Marius Herscovitz,
Orly Yadid-Pecht:
A modified Multi Scale Retinex algorithm with an improved global impressionof brightness for wide dynamic range pictures.
Mach. Vis. Appl. 15(4): 220-228 (2004) |
2003 |
5 | EE | Alexander Fish,
Dmitry Akselrod,
Orly Yadid-Pecht:
An adaptive center of mass detection system employing a 2-D dynamic element matching algorithm for object tracking.
ISCAS (3) 2003: 778-781 |
2001 |
4 | EE | Alexander Fish,
Orly Yadid-Pecht:
CMOS current/voltage mode winner-take-all circuit with spatial filtering.
ISCAS (3) 2001: 636-639 |
2000 |
3 | EE | Orly Yadid-Pecht:
Widening the dynamic range of pictures using a minimum spanning tree algorithm.
Mach. Vis. Appl. 12(1): 1-6 (2000) |
1996 |
2 | EE | Orly Yadid-Pecht,
Moty Gerner,
Lior Dvir,
Eliyahu Brutman,
Uri Shimony:
Recognition of handwritten musical notes by a modified Neocognitron.
Mach. Vis. Appl. 9(2): 65-72 (1996) |
1 | EE | Orly Yadid-Pecht,
Moshe Gur:
Efficient Biologically-based Pattern-recognizing Networks.
Neural Networks 9(6): 1061-1070 (1996) |