2009 | ||
---|---|---|
76 | EE | Bin Liu, Ying Yang, Geoffrey I. Webb, Janice R. Boughton: A Comparative Study of Bandwidth Choice in Kernel Density Estimation for Naive Bayesian Classification. PAKDD 2009: 302-313 |
2008 | ||
75 | Geoffrey I. Webb: Multi-Strategy Ensemble Learning, Ensembles of Bayesian Classifiers, and the Problem of False Discoveries. AusDM 2008: 15 | |
74 | EE | Geoffrey I. Webb: Discovering significant patterns. Machine Learning 71(1): 131 (2008) |
73 | EE | Geoffrey I. Webb: Layered critical values: a powerful direct-adjustment approach to discovering significant patterns. Machine Learning 71(2-3): 307-323 (2008) |
2007 | ||
72 | EE | Fei Zheng, Geoffrey I. Webb: Finding the Right Family: Parent and Child Selection for Averaged One-Dependence Estimators. ECML 2007: 490-501 |
71 | EE | Geoffrey I. Webb: Finding the Real Patterns. PAKDD 2007: 6 |
70 | EE | Geoffrey I. Webb: Editorial. Data Min. Knowl. Discov. 15(1): 1-2 (2007) |
69 | EE | Ying Yang, Geoffrey I. Webb, Jesús Cerquides, Kevin B. Korb, Janice R. Boughton, Kai Ming Ting: To Select or To Weigh: A Comparative Study of Linear Combination Schemes for SuperParent-One-Dependence Estimators. IEEE Trans. Knowl. Data Eng. 19(12): 1652-1665 (2007) |
68 | EE | Geoffrey I. Webb: Discovering Significant Patterns. Machine Learning 68(1): 1-33 (2007) |
67 | EE | Ying Yang, Geoffrey I. Webb, Kevin B. Korb, Kai Ming Ting: Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning 69(1): 35-53 (2007) |
2006 | ||
66 | Qiang Yang, Geoffrey I. Webb: PRICAI 2006: Trends in Artificial Intelligence, 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, August 7-11, 2006, Proceedings Springer 2006 | |
65 | EE | Jingli Lu, Ying Yang, Geoffrey I. Webb: Incremental Discretization for Naïve-Bayes Classifier. ADMA 2006: 223-238 |
64 | Geoffrey I. Webb: Anytime learning and classification for online applications. AMT 2006: 7-12 | |
63 | EE | Ying Yang, Geoffrey I. Webb, Jesús Cerquides, Kevin B. Korb, Janice R. Boughton, Kai Ming Ting: To Select or To Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles. ECML 2006: 533-544 |
62 | EE | Fei Zheng, Geoffrey I. Webb: Efficient lazy elimination for averaged one-dependence estimators. ICML 2006: 1113-1120 |
61 | EE | Geoffrey I. Webb: Discovering significant rules. KDD 2006: 434-443 |
60 | EE | Geoffrey I. Webb, Damien Brain: Generality Is Predictive of Prediction Accuracy. Selected Papers from AusDM 2006: 1-13 |
59 | EE | Shiying Huang, Geoffrey I. Webb: Efficiently Identifying Exploratory Rules' Significance. Selected Papers from AusDM 2006: 64-77 |
2005 | ||
58 | EE | Geoffrey I. Webb: K-Optimal Pattern Discovery: An Efficient and Effective Approach to Exploratory Data Mining. Australian Conference on Artificial Intelligence 2005: 1-2 |
57 | EE | Ying Yang, Kevin B. Korb, Kai Ming Ting, Geoffrey I. Webb: Ensemble Selection for SuperParent-One-Dependence Estimators. Australian Conference on Artificial Intelligence 2005: 102-112 |
56 | EE | Shiying Huang, Geoffrey I. Webb: Pruning Derivative Partial Rules During Impact Rule Discovery. PAKDD 2005: 71-80 |
55 | Shiying Huang, Geoffrey I. Webb: Discarding Insignificant Rules during Impact Rule Discovery in Large, Dense Databases. SDM 2005 | |
54 | Ying Yang, Geoffrey I. Webb, Xindong Wu: Discretization Methods. The Data Mining and Knowledge Discovery Handbook 2005: 113-130 | |
53 | EE | Geoffrey I. Webb, Songmao Zhang: K-Optimal Rule Discovery. Data Min. Knowl. Discov. 10(1): 39-79 (2005) |
52 | EE | Geoffrey I. Webb, Kai Ming Ting: On the Application of ROC Analysis to Predict Classification Performance Under Varying Class Distributions. Machine Learning 58(1): 25-32 (2005) |
51 | EE | Geoffrey I. Webb, Janice R. Boughton, Zhihai Wang: Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning 58(1): 5-24 (2005) |
2004 | ||
50 | Geoffrey I. Webb, Xinghuo Yu: AI 2004: Advances in Artificial Intelligence, 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004, Proceedings Springer 2004 | |
49 | EE | Dhananjay R. Thiruvady, Geoffrey I. Webb: Mining Negative Rules Using GRD. PAKDD 2004: 161-165 |
48 | EE | Zhihai Wang, Geoffrey I. Webb, Fei Zheng: Selective Augmented Bayesian Network Classifiers Based on Rough Set Theory. PAKDD 2004: 319-328 |
47 | EE | Geoffrey I. Webb, Zijian Zheng: Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques. IEEE Trans. Knowl. Data Eng. 16(8): 980-991 (2004) |
46 | EE | Honghua Dai, Geoffrey I. Webb: Guest Editors' Introduction. International Journal of Software Engineering and Knowledge Engineering 14(4): 365-368 (2004) |
2003 | ||
45 | EE | Ying Yang, Geoffrey I. Webb: On Why Discretization Works for Naive-Bayes Classifiers. Australian Conference on Artificial Intelligence 2003: 440-452 |
44 | EE | Zhihai Wang, Geoffrey I. Webb, Fei Zheng: Adjusting Dependence Relations for Semi-Lazy TAN Classifiers. Australian Conference on Artificial Intelligence 2003: 453-465 |
43 | EE | Shane M. Butler, Geoffrey I. Webb, Rob A. Lewis: A Case Study in Feature Invention for Breast Cancer Diagnosis Using X-Ray Scatter Images. Australian Conference on Artificial Intelligence 2003: 677-685 |
42 | EE | Geoffrey I. Webb, Shane M. Butler, Douglas A. Newlands: On detecting differences between groups. KDD 2003: 256-265 |
41 | EE | Hongbo Shi, Zhihai Wang, Geoffrey I. Webb, Houkuan Huang: A New Restricted Bayesian Network Classifier. PAKDD 2003: 265-270 |
40 | EE | Ying Yang, Geoffrey I. Webb: Weighted Proportional k-Interval Discretization for Naive-Bayes Classifiers. PAKDD 2003: 501-512 |
39 | Chengqi Zhang, Shichao Zhang, Geoffrey I. Webb: Identifying Approximate Itemsets of Interest in Large Databases. Appl. Intell. 18(1): 91-104 (2003) | |
2002 | ||
38 | EE | Yakov Frayman, Bernard F. Rolfe, Geoffrey I. Webb: Solving Regression Problems Using Competitive Ensemble Models. Australian Joint Conference on Artificial Intelligence 2002: 511-522 |
37 | EE | Zhihai Wang, Geoffrey I. Webb: Comparison of Lazy Bayesian Rule and Tree-Augmented Bayesian Learning. ICDM 2002: 490-497 |
36 | EE | James E. Pearce, Geoffrey I. Webb, Robin N. Shaw, Brian Garner: Experimentation and Self Learning in Continuous Database Marketing. ICDM 2002: 775-778 |
35 | Ying Yang, Geoffrey I. Webb: Non-Disjoint Discretization for Naive-Bayes Classifiers. ICML 2002: 666-673 | |
34 | EE | Damien Brain, Geoffrey I. Webb: The Need for Low Bias Algorithms in Classification Learning from Large Data Sets. PKDD 2002: 62-73 |
2001 | ||
33 | EE | Geoffrey I. Webb: Candidate Elimination Criteria for Lazy Bayesian Rules. Australian Joint Conference on Artificial Intelligence 2001: 545-556 |
32 | EE | Songmao Zhang, Geoffrey I. Webb: Further Pruning for Efficient Association Rule Discovery. Australian Joint Conference on Artificial Intelligence 2001: 605-618 |
31 | EE | Ying Yang, Geoffrey I. Webb: Proportional k-Interval Discretization for Naive-Bayes Classifiers. ECML 2001: 564-575 |
30 | EE | Geoffrey I. Webb: Discovering associations with numeric variables. KDD 2001: 383-388 |
29 | EE | Geoffrey I. Webb, Michael J. Pazzani, Daniel Billsus: Machine Learning for User Modeling. User Model. User-Adapt. Interact. 11(1-2): 19-29 (2001) |
2000 | ||
28 | EE | Geoffrey I. Webb: Efficient search for association rules. KDD 2000: 99-107 |
27 | Geoffrey I. Webb: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40(2): 159-196 (2000) | |
26 | Zijian Zheng, Geoffrey I. Webb: Lazy Learning of Bayesian Rules. Machine Learning 41(1): 53-84 (2000) | |
1999 | ||
25 | Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting: Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees. ICML 1999: 493-502 | |
24 | Geoffrey I. Webb: Decision Tree Grafting From the All Tests But One Partition. IJCAI 1999: 702-707 | |
23 | EE | Zijian Zheng, Geoffrey I. Webb: Stochastic Attribute Selection Committees with Aultiple Boosting: Learning More Accurate and More Stable Classifer Committees. PAKDD 1999: 123-132 |
22 | EE | Douglas A. Newlands, Geoffrey I. Webb: Convex Hulls in Concept Induction. PAKDD 1999: 306-316 |
21 | Geoffrey I. Webb, Jason Wells, Zijian Zheng: An Experimental Evaluation of Integrating Machine Learning with Knowledge Acquisition. Machine Learning 35(1): 5-23 (1999) | |
1998 | ||
20 | Geoffrey I. Webb: The Problem of Missing Values in Decision Tree Grafting. Australian Joint Conference on Artificial Intelligence 1998: 273-283 | |
19 | Geoffrey I. Webb, Michael J. Pazzani: Adjusted Probability Naive Bayesian Induction. Australian Joint Conference on Artificial Intelligence 1998: 285-295 | |
18 | Zijian Zheng, Geoffrey I. Webb: Stochastic Attribute Selection Committees. Australian Joint Conference on Artificial Intelligence 1998: 321-332 | |
17 | Murlikrishna Viswanathan, Geoffrey I. Webb: Classification Learning Using All Rules. ECML 1998: 149-159 | |
16 | EE | Geoffrey I. Webb, Mark Kuzmycz: Evaluation of Data Aging: A Technique for Discounting Old Data During Student Modeling. Intelligent Tutoring Systems 1998: 384-393 |
15 | EE | Geoffrey I. Webb: Preface to UMUAI Special Issue on Machine Learning for User Modeling. User Model. User-Adapt. Interact. 8(1-2): 1-3 (1998) |
14 | EE | Bark Cheung Chiu, Geoffrey I. Webb: Using Decision Trees for Agent Modeling: Improving Prediction Performance. User Model. User-Adapt. Interact. 8(1-2): 131-152 (1998) |
1997 | ||
13 | Bark Cheung Chiu, Geoffrey I. Webb, Zijian Zheng: Using Decision Trees for Agent Modelling: A Study on Resolving Confliction Predictions. Australian Joint Conference on Artificial Intelligence 1997: 349-358 | |
12 | Geoffrey I. Webb: Decision Tree Grafting. IJCAI (2) 1997: 846-851 | |
1996 | ||
11 | Geoffrey I. Webb: Cost-Sensitive Specialization. PRICAI 1996: 23-34 | |
10 | EE | Geoffrey I. Webb: Further Experimental Evidence against the Utility of Occam's Razor CoRR cs.AI/9605101: (1996) |
9 | Geoffrey I. Webb: Further Experimental Evidence against the Utility of Occam's Razor. J. Artif. Intell. Res. (JAIR) 4: 397-417 (1996) | |
8 | EE | Geoffrey I. Webb: Integrating machine learning with knowledge acquisition through direct interaction with domain experts. Knowl.-Based Syst. 9(4): 253-266 (1996) |
1995 | ||
7 | Philip A. Smith, Geoffrey I. Webb: Transparency Debugging with Explanations for Novice Programmers. AADEBUG 1995: 105-118 | |
6 | EE | Douglas A. Newlands, Geoffrey I. Webb: Polygonal Inductive Generalisation System. IEA/AIE 1995: 587-592 |
5 | Geoffrey I. Webb: OPUS: An Efficient Admissible Algorithm for Unordered Search. J. Artif. Intell. Res. (JAIR) 3: 431-465 (1995) | |
4 | Geoffrey I. Webb, Mark Kuzmycz: Feature Based Modelling: A Methodology for Producing Coherent, Consistent, Dynamically Changing Models of Agents' Competencies. User Model. User-Adapt. Interact. 5(2): 117-150 (1995) | |
1992 | ||
3 | Mark Kuzmycz, Geoffrey I. Webb: Evaluation of Feature Based Modelling in Subtraction. Intelligent Tutoring Systems 1992: 269-276 | |
1988 | ||
2 | Geoffrey I. Webb: Techniques for Efficient Empirical Induction. Australian Joint Conference on Artificial Intelligence 1988: 225-239 | |
1 | Geoffrey I. Webb: A Knowledge-Based Approach to Computer-Aided Learning. International Journal of Man-Machine Studies 29(3): 257-285 (1988) |