2008 | ||
---|---|---|
76 | EE | Vanya Van Belle, Kristiaan Pelckmans, Johan A. K. Suykens, Sabine Van Huffel: Survival SVM: a practical scalable algorithm. ESANN 2008: 89-94 |
75 | EE | Marco Signoretto, Kristiaan Pelckmans, Johan A. K. Suykens: Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimation. ICANN (1) 2008: 175-184 |
74 | EE | Carlos Alzate, Johan A. K. Suykens: Sparse kernel models for spectral clustering using the incomplete Cholesky decomposition. IJCNN 2008: 3556-3563 |
73 | EE | Carlos Alzate, Johan A. K. Suykens: A regularized kernel CCA contrast function for ICA. Neural Networks 21(2-3): 170-181 (2008) |
72 | EE | Fabian Ojeda, Johan A. K. Suykens, Bart De Moor: Low rank updated LS-SVM classifiers for fast variable selection. Neural Networks 21(2-3): 437-449 (2008) |
2007 | ||
71 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Convex optimization for the design of learning machines. ESANN 2007: 193-204 |
70 | EE | Ben Van Calster, Jan Luts, Johan A. K. Suykens, George Condous, Tom Bourne, Dirk Timmerman, Sabine Van Huffel: Comparing Methods for Multi-class Probabilities in Medical Decision Making Using LS-SVMs and Kernel Logistic Regression. ICANN (2) 2007: 139-148 |
69 | EE | Peter Karsmakers, Kristiaan Pelckmans, Johan A. K. Suykens: Multi-class kernel logistic regression: a fixed-size implementation. IJCNN 2007: 1756-1761 |
68 | EE | Fabian Ojeda, Johan A. K. Suykens, Bart De Moor: Variable selection by rank-one updates for least squares support vector machines. IJCNN 2007: 2283-2288 |
67 | EE | Carlos Alzate, Johan A. K. Suykens: ICA through an LS-SVM based Kernel CCA Measure for Independence. IJCNN 2007: 2920-2925 |
66 | EE | Kristiaan Pelckmans, Johan A. K. Suykens: Transductive Rademacher Complexities for Learning Over a Graph. MLG 2007 |
65 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: A Risk Minimization Principle for a Class of Parzen Estimators. NIPS 2007 |
64 | EE | Jan Luts, Arend Heerschap, Johan A. K. Suykens, Sabine Van Huffel: A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. Artificial Intelligence in Medicine 40(2): 87-102 (2007) |
63 | EE | Kristiaan Pelckmans, Jos De Brabanter, Johan A. K. Suykens, Bart De Moor: Support and Quantile Tubes CoRR abs/cs/0703055: (2007) |
62 | EE | Dániel Hillier, Serkan Günel, Johan A. K. Suykens, Joos Vandewalle: Partial Synchronization in oscillator Arrays with Asymmetric Coupling. I. J. Bifurcation and Chaos 17(11): 4177-4185 (2007) |
61 | EE | Chuan Lu, Andy Devos, Johan A. K. Suykens, Carles Arús, Sabine Van Huffel: Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis. IEEE Transactions on Information Technology in Biomedicine 11(3): 338-347 (2007) |
60 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: A Convex Approach to Validation-Based Learning of the Regularization Constant. IEEE Transactions on Neural Networks 18(3): 917-920 (2007) |
59 | EE | Luc Hoegaerts, Lieven De Lathauwer, Ivan Goethals, Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: Efficiently updating and tracking the dominant kernel principal components. Neural Networks 20(2): 220-229 (2007) |
2006 | ||
58 | EE | Carlos Alzate, Johan A. K. Suykens: A Weighted Kernel PCA Formulation with Out-of-Sample Extensions for Spectral Clustering Methods. IJCNN 2006: 138-144 |
57 | EE | Mustak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle: Multi-scroll and hypercube attractors from Josephson junctions. ISCAS 2006 |
56 | EE | Tony Van Gestel, Bart Baesens, Peter Van Dijcke, Joao Garcia, Johan A. K. Suykens, Jan Vanthienen: A process model to develop an internal rating system: Sovereign credit ratings. Decision Support Systems 42(2): 1131-1151 (2006) |
55 | EE | Tony Van Gestel, Bart Baesens, Johan A. K. Suykens, Dirk Van den Poel, Dirk-Emma Baestaens, Marleen Willekens: Bayesian kernel based classification for financial distress detection. European Journal of Operational Research 172(3): 979-1003 (2006) |
54 | EE | Mustak E. Yalcin, Johan A. K. Suykens: Spatiotemporal Pattern Formation on the ACE16K CNN Chip. I. J. Bifurcation and Chaos 16(5): 1537-1546 (2006) |
53 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Additive Regularization Trade-Off: Fusion of Training and Validation Levels in Kernel Methods. Machine Learning 62(3): 217-252 (2006) |
2005 | ||
52 | EE | Nathalie Pochet, Frizo A. L. Janssens, Frank De Smet, Kathleen Marchal, Ignace Vergote, Johan A. K. Suykens, Bart De Moor: M@CBETH: Optimizing Clinical Microarray Classification. CSB Workshops 2005: 89-90 |
51 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Componentwise Support Vector Machines for Structure Detection. ICANN (2) 2005: 643-648 |
50 | EE | Mustak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle: Spatiotemporal pattern formation in the ACE16k CNN chip. ISCAS (6) 2005: 5814-5817 |
49 | EE | Marcelo Espinoza, Johan A. K. Suykens, Bart De Moor: Load Forecasting Using Fixed-Size Least Squares Support Vector Machines. IWANN 2005: 1018-1026 |
48 | EE | B. Pluymers, L. Roobrouck, J. Buijs, Johan A. K. Suykens, Bart De Moor: Constrained linear MPC with time-varying terminal cost using convex combinations. Automatica 41(5): 831-837 (2005) |
47 | EE | Ivan Goethals, Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Identification of MIMO Hammerstein models using least squares support vector machines. Automatica 41(7): 1263-1272 (2005) |
46 | EE | Nathalie Pochet, Frizo A. L. Janssens, Frank De Smet, Kathleen Marchal, Johan A. K. Suykens, Bart De Moor: M@CBETH: a microarray classification benchmarking tool. Bioinformatics 21(14): 3185-3186 (2005) |
45 | EE | Kristiaan Pelckmans, Ivan Goethals, Jos De Brabanter, Johan A. K. Suykens, Bart De Moor: Componentwise Least Squares Support Vector Machines CoRR abs/cs/0504086: (2005) |
44 | EE | Kristiaan Pelckmans, Jos De Brabanter, Johan A. K. Suykens, Bart De Moor: Handling missing values in support vector machine classifiers. Neural Networks 18(5-6): 684-692 (2005) |
43 | EE | Kristiaan Pelckmans, Marcelo Espinoza, Jos De Brabanter, Johan A. K. Suykens, Bart De Moor: Primal-Dual Monotone Kernel Regression. Neural Processing Letters 22(2): 171-182 (2005) |
42 | EE | Luc Hoegaerts, Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: Subset based least squares subspace regression in RKHS. Neurocomputing 63: 293-323 (2005) |
41 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Building sparse representations and structure determination on LS-SVM substrates. Neurocomputing 64: 137-159 (2005) |
40 | EE | Kristiaan Pelckmans, Jos De Brabanter, Johan A. K. Suykens, Bart De Moor: The differogram: Non-parametric noise variance estimation and its use for model selection. Neurocomputing 69(1-3): 100-122 (2005) |
2004 | ||
39 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Sparse LS-SVMs using additive regularization with a penalized validation criterion. ESANN 2004: 435-440 |
38 | EE | Kristiaan Pelckmans, Johan A. K. Suykens, Bart De Moor: Morozov, Ivanov and Tikhonov Regularization Based LS-SVMs. ICONIP 2004: 1216-1222 |
37 | EE | Luc Hoegaerts, Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: A Comparison of Pruning Algorithms for Sparse Least Squares Support Vector Machines. ICONIP 2004: 1247-1253 |
36 | Mustak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle: A double scroll based true random bit generator. ISCAS (4) 2004: 581-584 | |
35 | EE | Tijl De Bie, Johan A. K. Suykens, Bart De Moor: Learning from General Label Constraints. SSPR/SPR 2004: 671-679 |
34 | EE | Lukas Lukas, Andy Devos, Johan A. K. Suykens, Leentje Vanhamme, F. A. Howe, Carles Majós, A. Moreno-Torres, M. Van Der Graaf, Anne Rosemary Tate, Carles Arús, Sabine Van Huffel: Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine 31(1): 73-89 (2004) |
33 | EE | Nathalie Pochet, Frank De Smet, Johan A. K. Suykens, Bart De Moor: Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20(17): 3185-3195 (2004) |
32 | EE | Tony Van Gestel, Johan A. K. Suykens, Bart Baesens, Stijn Viaene, Jan Vanthienen, Guido Dedene, Bart De Moor, Joos Vandewalle: Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning 54(1): 5-32 (2004) |
2003 | ||
31 | EE | Chuan Lu, Tony Van Gestel, Johan A. K. Suykens, Sabine Van Huffel, Dirk Timmerman, Ignace Vergote: Classification of Ovarian Tumors Using Bayesian Least Squares Support Vector Machines. AIME 2003: 219-228 |
30 | EE | Luc Hoegaerts, Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: Kernel PLS variants for regression. ESANN 2003: 200-208 |
29 | EE | Johan A. K. Suykens, Mustak E. Yalcin, Joos Vandewalle: Coupled chaotic simulated annealing processes. ISCAS (3) 2003: 582-585 |
28 | EE | Chuan Lu, Tony Van Gestel, Johan A. K. Suykens, Sabine Van Huffel, Ignace Vergote, Dirk Timmerman: Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artificial Intelligence in Medicine 28(3): 281-306 (2003) |
2002 | ||
27 | Lukas Lukas, Andy Devos, Johan A. K. Suykens, Leentje Vanhamme, Sabine Van Huffel, Anne Rosemary Tate, Carles Majós, Carles Arús: The use of LS-SVM in the classification of brain tumors based on Magnetic Resonance Spectroscopy signals. ESANN 2002: 131-136 | |
26 | Lieveke Ameye, Chuan Lu, Lukas Lukas, Jos De Brabanter, Johan A. K. Suykens, Sabine Van Huffel, Hans Daniels, Gunnar Naulaers, Hugo Devlieger: Prediction of mental development of preterm newborns at birth time using LS-SVM. ESANN 2002: 167-172 | |
25 | EE | Jos De Brabanter, Kristiaan Pelckmans, Johan A. K. Suykens, Joos Vandewalle: Robust Cross-Validation Score Function for Non-linear Function Estimation. ICANN 2002: 713-719 |
24 | EE | Bart Hamers, Johan A. K. Suykens, Bart De Moor: Compactly Supported RBF Kernels for Sparsifying the Gram Matrix in LS-SVM Regression Models. ICANN 2002: 720-726 |
23 | EE | Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: Intelligence and Cooperative Search by Coupled Local Minimizers CoRR cs.AI/0210030: (2002) |
22 | EE | Mustak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle, Serdar Özoguz: Families of scroll Grid attractors. I. J. Bifurcation and Chaos 12(1): 23-41 (2002) |
21 | EE | Tony Van Gestel, Johan A. K. Suykens, Gert R. G. Lanckriet, Annemie Lambrechts, Bart De Moor, Joos Vandewalle: Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis. Neural Computation 14(5): 1115-1147 (2002) |
20 | Tony Van Gestel, Johan A. K. Suykens, Gert R. G. Lanckriet, Annemie Lambrechts, Bart De Moor, Joos Vandewalle: Multiclass LS SVMs Moderated Outputs and Coding Decoding Schemes. Neural Processing Letters 15(1): 45-58 (2002) | |
19 | EE | Johan A. K. Suykens, Jos De Brabanter, Lukas Lukas, Joos Vandewalle: Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1-4): 85-105 (2002) |
2001 | ||
18 | EE | Tony Van Gestel, Johan A. K. Suykens, Bart De Moor, Joos Vandewalle: Automatic relevance determination for Least Squares Support Vector Machines classifiers. ESANN 2001: 13-18 |
17 | EE | Tony Van Gestel, Johan A. K. Suykens, Jos De Brabanter, Bart De Moor, Joos Vandewalle: Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines. ICANN 2001: 384-389 |
16 | Stijn Viaene, Bart Baesens, Tony Van Gestel, Johan A. K. Suykens, Dirk Van den Poel, Jan Vanthienen, Bart De Moor, Guido Dedene: Knowledge discovery in a direct marketing case using least squares support vector machines. Int. J. Intell. Syst. 16(9): 1023-1036 (2001) | |
15 | Michel Duhoux, Johan A. K. Suykens, Bart De Moor, Joos Vandewalle: Improved Long-Term Temperature Prediction by Chaining of Neural Networks. Int. J. Neural Syst. 11(1): 1-10 (2001) | |
14 | EE | Johan A. K. Suykens, Joos Vandewalle, Bart De Moor: Optimal control by least squares support vector machines. Neural Networks 14(1): 23-35 (2001) |
2000 | ||
13 | EE | Johan A. K. Suykens, Joos Vandewalle: The K.U.Leuven competition data: a challenge for advanced neural network techniques. ESANN 2000: 299-304 |
12 | EE | Johan A. K. Suykens, Lukas Lukas, Joos Vandewalle: Sparse least squares Support Vector Machine classifiers. ESANN 2000: 37-42 |
11 | EE | Bart Baesens, Stijn Viaene, Tony Van Gestel, Johan A. K. Suykens, Guido Dedene, Bart De Moor, Jan Vanthienen: An empirical assessment of kernel type performance for least squares support vector machine classifiers. KES 2000: 313-316 |
10 | EE | Stijn Viaene, Bart Baesens, Tony Van Gestel, Johan A. K. Suykens, Dirk Van den Poel, Jan Vanthienen, Bart De Moor, Guido Dedene: Knowledge Discovery Using Least Squares Support Vector Machine Classifiers: A Direct Marketing Case. PKDD 2000: 657-664 |
1999 | ||
9 | EE | Mustak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle: On the realization of n-scroll attractors. ISCAS (5) 1999: 483-486 |
8 | EE | Johan A. K. Suykens, Joos Vandewalle: Training multilayer perceptron classifiers based on a modified support vector method. IEEE Transactions on Neural Networks 10(4): 907-911 (1999) |
7 | Johan A. K. Suykens, Joos Vandewalle: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9(3): 293-300 (1999) | |
1998 | ||
6 | EE | Johan A. K. Suykens, Joos Vandewalle: Improved generalization ability of neurocontrollers by imposing NLq stability constraints. ESANN 1998: 99-104 |
5 | Johan A. K. Suykens, Herman Verrelst, Joos Vandewalle: On-Line Learning Fokker-Planck Machine. Neural Processing Letters 7(2): 81-89 (1998) | |
1997 | ||
4 | EE | Johan A. K. Suykens, Bart De Moor, Joos Vandewalle: NLq Theory: A Neural Control Framework with Global Asymptotic Stability Criteria. Neural Networks 10(4): 615-637 (1997) |
1996 | ||
3 | Johan A. K. Suykens, Philippe Lemmerling, W. Favoreel, Bart De Moor, M. Crepel, P. Briol: Modelling the Belgian Gas Consumption Using Neural Networks. Neural Processing Letters 4(3): 157-166 (1996) | |
1995 | ||
2 | Johan A. K. Suykens, Joos Vandewalle: Generalized Cellular Neural Networks Represented in he NLq Framework. ISCAS 1995: 645-648 | |
1994 | ||
1 | EE | Johan A. K. Suykens, Bart De Moor, Joos Vandewalle: Static and dynamic stabilizing neural controllers, applicable to transition between equilibrium points. Neural Networks 7(5): 819-831 (1994) |