2008 |
76 | EE | Vanya Van Belle,
Kristiaan Pelckmans,
Johan A. K. Suykens,
Sabine Van Huffel:
Survival SVM: a practical scalable algorithm.
ESANN 2008: 89-94 |
75 | EE | Marco Signoretto,
Kristiaan Pelckmans,
Johan A. K. Suykens:
Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimation.
ICANN (1) 2008: 175-184 |
74 | EE | Carlos Alzate,
Johan A. K. Suykens:
Sparse kernel models for spectral clustering using the incomplete Cholesky decomposition.
IJCNN 2008: 3556-3563 |
73 | EE | Carlos Alzate,
Johan A. K. Suykens:
A regularized kernel CCA contrast function for ICA.
Neural Networks 21(2-3): 170-181 (2008) |
72 | EE | Fabian Ojeda,
Johan A. K. Suykens,
Bart De Moor:
Low rank updated LS-SVM classifiers for fast variable selection.
Neural Networks 21(2-3): 437-449 (2008) |
2007 |
71 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Convex optimization for the design of learning machines.
ESANN 2007: 193-204 |
70 | EE | Ben Van Calster,
Jan Luts,
Johan A. K. Suykens,
George Condous,
Tom Bourne,
Dirk Timmerman,
Sabine Van Huffel:
Comparing Methods for Multi-class Probabilities in Medical Decision Making Using LS-SVMs and Kernel Logistic Regression.
ICANN (2) 2007: 139-148 |
69 | EE | Peter Karsmakers,
Kristiaan Pelckmans,
Johan A. K. Suykens:
Multi-class kernel logistic regression: a fixed-size implementation.
IJCNN 2007: 1756-1761 |
68 | EE | Fabian Ojeda,
Johan A. K. Suykens,
Bart De Moor:
Variable selection by rank-one updates for least squares support vector machines.
IJCNN 2007: 2283-2288 |
67 | EE | Carlos Alzate,
Johan A. K. Suykens:
ICA through an LS-SVM based Kernel CCA Measure for Independence.
IJCNN 2007: 2920-2925 |
66 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens:
Transductive Rademacher Complexities for Learning Over a Graph.
MLG 2007 |
65 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
A Risk Minimization Principle for a Class of Parzen Estimators.
NIPS 2007 |
64 | EE | Jan Luts,
Arend Heerschap,
Johan A. K. Suykens,
Sabine Van Huffel:
A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection.
Artificial Intelligence in Medicine 40(2): 87-102 (2007) |
63 | EE | Kristiaan Pelckmans,
Jos De Brabanter,
Johan A. K. Suykens,
Bart De Moor:
Support and Quantile Tubes
CoRR abs/cs/0703055: (2007) |
62 | EE | Dániel Hillier,
Serkan Günel,
Johan A. K. Suykens,
Joos Vandewalle:
Partial Synchronization in oscillator Arrays with Asymmetric Coupling.
I. J. Bifurcation and Chaos 17(11): 4177-4185 (2007) |
61 | EE | Chuan Lu,
Andy Devos,
Johan A. K. Suykens,
Carles Arús,
Sabine Van Huffel:
Bagging Linear Sparse Bayesian Learning Models for Variable Selection in Cancer Diagnosis.
IEEE Transactions on Information Technology in Biomedicine 11(3): 338-347 (2007) |
60 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
A Convex Approach to Validation-Based Learning of the Regularization Constant.
IEEE Transactions on Neural Networks 18(3): 917-920 (2007) |
59 | EE | Luc Hoegaerts,
Lieven De Lathauwer,
Ivan Goethals,
Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
Efficiently updating and tracking the dominant kernel principal components.
Neural Networks 20(2): 220-229 (2007) |
2006 |
58 | EE | Carlos Alzate,
Johan A. K. Suykens:
A Weighted Kernel PCA Formulation with Out-of-Sample Extensions for Spectral Clustering Methods.
IJCNN 2006: 138-144 |
57 | EE | Mustak E. Yalcin,
Johan A. K. Suykens,
Joos Vandewalle:
Multi-scroll and hypercube attractors from Josephson junctions.
ISCAS 2006 |
56 | EE | Tony Van Gestel,
Bart Baesens,
Peter Van Dijcke,
Joao Garcia,
Johan A. K. Suykens,
Jan Vanthienen:
A process model to develop an internal rating system: Sovereign credit ratings.
Decision Support Systems 42(2): 1131-1151 (2006) |
55 | EE | Tony Van Gestel,
Bart Baesens,
Johan A. K. Suykens,
Dirk Van den Poel,
Dirk-Emma Baestaens,
Marleen Willekens:
Bayesian kernel based classification for financial distress detection.
European Journal of Operational Research 172(3): 979-1003 (2006) |
54 | EE | Mustak E. Yalcin,
Johan A. K. Suykens:
Spatiotemporal Pattern Formation on the ACE16K CNN Chip.
I. J. Bifurcation and Chaos 16(5): 1537-1546 (2006) |
53 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Additive Regularization Trade-Off: Fusion of Training and Validation Levels in Kernel Methods.
Machine Learning 62(3): 217-252 (2006) |
2005 |
52 | EE | Nathalie Pochet,
Frizo A. L. Janssens,
Frank De Smet,
Kathleen Marchal,
Ignace Vergote,
Johan A. K. Suykens,
Bart De Moor:
M@CBETH: Optimizing Clinical Microarray Classification.
CSB Workshops 2005: 89-90 |
51 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Componentwise Support Vector Machines for Structure Detection.
ICANN (2) 2005: 643-648 |
50 | EE | Mustak E. Yalcin,
Johan A. K. Suykens,
Joos Vandewalle:
Spatiotemporal pattern formation in the ACE16k CNN chip.
ISCAS (6) 2005: 5814-5817 |
49 | EE | Marcelo Espinoza,
Johan A. K. Suykens,
Bart De Moor:
Load Forecasting Using Fixed-Size Least Squares Support Vector Machines.
IWANN 2005: 1018-1026 |
48 | EE | B. Pluymers,
L. Roobrouck,
J. Buijs,
Johan A. K. Suykens,
Bart De Moor:
Constrained linear MPC with time-varying terminal cost using convex combinations.
Automatica 41(5): 831-837 (2005) |
47 | EE | Ivan Goethals,
Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Identification of MIMO Hammerstein models using least squares support vector machines.
Automatica 41(7): 1263-1272 (2005) |
46 | EE | Nathalie Pochet,
Frizo A. L. Janssens,
Frank De Smet,
Kathleen Marchal,
Johan A. K. Suykens,
Bart De Moor:
M@CBETH: a microarray classification benchmarking tool.
Bioinformatics 21(14): 3185-3186 (2005) |
45 | EE | Kristiaan Pelckmans,
Ivan Goethals,
Jos De Brabanter,
Johan A. K. Suykens,
Bart De Moor:
Componentwise Least Squares Support Vector Machines
CoRR abs/cs/0504086: (2005) |
44 | EE | Kristiaan Pelckmans,
Jos De Brabanter,
Johan A. K. Suykens,
Bart De Moor:
Handling missing values in support vector machine classifiers.
Neural Networks 18(5-6): 684-692 (2005) |
43 | EE | Kristiaan Pelckmans,
Marcelo Espinoza,
Jos De Brabanter,
Johan A. K. Suykens,
Bart De Moor:
Primal-Dual Monotone Kernel Regression.
Neural Processing Letters 22(2): 171-182 (2005) |
42 | EE | Luc Hoegaerts,
Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
Subset based least squares subspace regression in RKHS.
Neurocomputing 63: 293-323 (2005) |
41 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Building sparse representations and structure determination on LS-SVM substrates.
Neurocomputing 64: 137-159 (2005) |
40 | EE | Kristiaan Pelckmans,
Jos De Brabanter,
Johan A. K. Suykens,
Bart De Moor:
The differogram: Non-parametric noise variance estimation and its use for model selection.
Neurocomputing 69(1-3): 100-122 (2005) |
2004 |
39 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Sparse LS-SVMs using additive regularization with a penalized validation criterion.
ESANN 2004: 435-440 |
38 | EE | Kristiaan Pelckmans,
Johan A. K. Suykens,
Bart De Moor:
Morozov, Ivanov and Tikhonov Regularization Based LS-SVMs.
ICONIP 2004: 1216-1222 |
37 | EE | Luc Hoegaerts,
Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
A Comparison of Pruning Algorithms for Sparse Least Squares Support Vector Machines.
ICONIP 2004: 1247-1253 |
36 | | Mustak E. Yalcin,
Johan A. K. Suykens,
Joos Vandewalle:
A double scroll based true random bit generator.
ISCAS (4) 2004: 581-584 |
35 | EE | Tijl De Bie,
Johan A. K. Suykens,
Bart De Moor:
Learning from General Label Constraints.
SSPR/SPR 2004: 671-679 |
34 | EE | Lukas Lukas,
Andy Devos,
Johan A. K. Suykens,
Leentje Vanhamme,
F. A. Howe,
Carles Majós,
A. Moreno-Torres,
M. Van Der Graaf,
Anne Rosemary Tate,
Carles Arús,
Sabine Van Huffel:
Brain tumor classification based on long echo proton MRS signals.
Artificial Intelligence in Medicine 31(1): 73-89 (2004) |
33 | EE | Nathalie Pochet,
Frank De Smet,
Johan A. K. Suykens,
Bart De Moor:
Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction.
Bioinformatics 20(17): 3185-3195 (2004) |
32 | EE | Tony Van Gestel,
Johan A. K. Suykens,
Bart Baesens,
Stijn Viaene,
Jan Vanthienen,
Guido Dedene,
Bart De Moor,
Joos Vandewalle:
Benchmarking Least Squares Support Vector Machine Classifiers.
Machine Learning 54(1): 5-32 (2004) |
2003 |
31 | EE | Chuan Lu,
Tony Van Gestel,
Johan A. K. Suykens,
Sabine Van Huffel,
Dirk Timmerman,
Ignace Vergote:
Classification of Ovarian Tumors Using Bayesian Least Squares Support Vector Machines.
AIME 2003: 219-228 |
30 | EE | Luc Hoegaerts,
Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
Kernel PLS variants for regression.
ESANN 2003: 200-208 |
29 | EE | Johan A. K. Suykens,
Mustak E. Yalcin,
Joos Vandewalle:
Coupled chaotic simulated annealing processes.
ISCAS (3) 2003: 582-585 |
28 | EE | Chuan Lu,
Tony Van Gestel,
Johan A. K. Suykens,
Sabine Van Huffel,
Ignace Vergote,
Dirk Timmerman:
Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines.
Artificial Intelligence in Medicine 28(3): 281-306 (2003) |
2002 |
27 | | Lukas Lukas,
Andy Devos,
Johan A. K. Suykens,
Leentje Vanhamme,
Sabine Van Huffel,
Anne Rosemary Tate,
Carles Majós,
Carles Arús:
The use of LS-SVM in the classification of brain tumors based on Magnetic Resonance Spectroscopy signals.
ESANN 2002: 131-136 |
26 | | Lieveke Ameye,
Chuan Lu,
Lukas Lukas,
Jos De Brabanter,
Johan A. K. Suykens,
Sabine Van Huffel,
Hans Daniels,
Gunnar Naulaers,
Hugo Devlieger:
Prediction of mental development of preterm newborns at birth time using LS-SVM.
ESANN 2002: 167-172 |
25 | EE | Jos De Brabanter,
Kristiaan Pelckmans,
Johan A. K. Suykens,
Joos Vandewalle:
Robust Cross-Validation Score Function for Non-linear Function Estimation.
ICANN 2002: 713-719 |
24 | EE | Bart Hamers,
Johan A. K. Suykens,
Bart De Moor:
Compactly Supported RBF Kernels for Sparsifying the Gram Matrix in LS-SVM Regression Models.
ICANN 2002: 720-726 |
23 | EE | Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
Intelligence and Cooperative Search by Coupled Local Minimizers
CoRR cs.AI/0210030: (2002) |
22 | EE | Mustak E. Yalcin,
Johan A. K. Suykens,
Joos Vandewalle,
Serdar Özoguz:
Families of scroll Grid attractors.
I. J. Bifurcation and Chaos 12(1): 23-41 (2002) |
21 | EE | Tony Van Gestel,
Johan A. K. Suykens,
Gert R. G. Lanckriet,
Annemie Lambrechts,
Bart De Moor,
Joos Vandewalle:
Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis.
Neural Computation 14(5): 1115-1147 (2002) |
20 | | Tony Van Gestel,
Johan A. K. Suykens,
Gert R. G. Lanckriet,
Annemie Lambrechts,
Bart De Moor,
Joos Vandewalle:
Multiclass LS SVMs Moderated Outputs and Coding Decoding Schemes.
Neural Processing Letters 15(1): 45-58 (2002) |
19 | EE | Johan A. K. Suykens,
Jos De Brabanter,
Lukas Lukas,
Joos Vandewalle:
Weighted least squares support vector machines: robustness and sparse approximation.
Neurocomputing 48(1-4): 85-105 (2002) |
2001 |
18 | EE | Tony Van Gestel,
Johan A. K. Suykens,
Bart De Moor,
Joos Vandewalle:
Automatic relevance determination for Least Squares Support Vector Machines classifiers.
ESANN 2001: 13-18 |
17 | EE | Tony Van Gestel,
Johan A. K. Suykens,
Jos De Brabanter,
Bart De Moor,
Joos Vandewalle:
Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines.
ICANN 2001: 384-389 |
16 | | Stijn Viaene,
Bart Baesens,
Tony Van Gestel,
Johan A. K. Suykens,
Dirk Van den Poel,
Jan Vanthienen,
Bart De Moor,
Guido Dedene:
Knowledge discovery in a direct marketing case using least squares support vector machines.
Int. J. Intell. Syst. 16(9): 1023-1036 (2001) |
15 | | Michel Duhoux,
Johan A. K. Suykens,
Bart De Moor,
Joos Vandewalle:
Improved Long-Term Temperature Prediction by Chaining of Neural Networks.
Int. J. Neural Syst. 11(1): 1-10 (2001) |
14 | EE | Johan A. K. Suykens,
Joos Vandewalle,
Bart De Moor:
Optimal control by least squares support vector machines.
Neural Networks 14(1): 23-35 (2001) |
2000 |
13 | EE | Johan A. K. Suykens,
Joos Vandewalle:
The K.U.Leuven competition data: a challenge for advanced neural network techniques.
ESANN 2000: 299-304 |
12 | EE | Johan A. K. Suykens,
Lukas Lukas,
Joos Vandewalle:
Sparse least squares Support Vector Machine classifiers.
ESANN 2000: 37-42 |
11 | EE | Bart Baesens,
Stijn Viaene,
Tony Van Gestel,
Johan A. K. Suykens,
Guido Dedene,
Bart De Moor,
Jan Vanthienen:
An empirical assessment of kernel type performance for least squares support vector machine classifiers.
KES 2000: 313-316 |
10 | EE | Stijn Viaene,
Bart Baesens,
Tony Van Gestel,
Johan A. K. Suykens,
Dirk Van den Poel,
Jan Vanthienen,
Bart De Moor,
Guido Dedene:
Knowledge Discovery Using Least Squares Support Vector Machine Classifiers: A Direct Marketing Case.
PKDD 2000: 657-664 |
1999 |
9 | EE | Mustak E. Yalcin,
Johan A. K. Suykens,
Joos Vandewalle:
On the realization of n-scroll attractors.
ISCAS (5) 1999: 483-486 |
8 | EE | Johan A. K. Suykens,
Joos Vandewalle:
Training multilayer perceptron classifiers based on a modified support vector method.
IEEE Transactions on Neural Networks 10(4): 907-911 (1999) |
7 | | Johan A. K. Suykens,
Joos Vandewalle:
Least Squares Support Vector Machine Classifiers.
Neural Processing Letters 9(3): 293-300 (1999) |
1998 |
6 | EE | Johan A. K. Suykens,
Joos Vandewalle:
Improved generalization ability of neurocontrollers by imposing NLq stability constraints.
ESANN 1998: 99-104 |
5 | | Johan A. K. Suykens,
Herman Verrelst,
Joos Vandewalle:
On-Line Learning Fokker-Planck Machine.
Neural Processing Letters 7(2): 81-89 (1998) |
1997 |
4 | EE | Johan A. K. Suykens,
Bart De Moor,
Joos Vandewalle:
NLq Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.
Neural Networks 10(4): 615-637 (1997) |
1996 |
3 | | Johan A. K. Suykens,
Philippe Lemmerling,
W. Favoreel,
Bart De Moor,
M. Crepel,
P. Briol:
Modelling the Belgian Gas Consumption Using Neural Networks.
Neural Processing Letters 4(3): 157-166 (1996) |
1995 |
2 | | Johan A. K. Suykens,
Joos Vandewalle:
Generalized Cellular Neural Networks Represented in he NLq Framework.
ISCAS 1995: 645-648 |
1994 |
1 | EE | Johan A. K. Suykens,
Bart De Moor,
Joos Vandewalle:
Static and dynamic stabilizing neural controllers, applicable to transition between equilibrium points.
Neural Networks 7(5): 819-831 (1994) |