2004 |
11 | EE | Artur Merke,
Ralf Schoknecht:
Convergence of synchronous reinforcement learning with linear function approximation.
ICML 2004 |
10 | EE | Frank Padberg,
Thomas Ragg,
Ralf Schoknecht:
Using Machine Learning for Estimating the Defect Content After an Inspection.
IEEE Trans. Software Eng. 30(1): 17-28 (2004) |
9 | EE | Ralf Schoknecht,
Martin Spott,
Martin A. Riedmiller:
Fynesse: An architecture for integrating prior knowledge in autonomously learning agents.
Soft Comput. 8(6): 397-408 (2004) |
2003 |
8 | EE | Ralf Schoknecht,
Martin A. Riedmiller:
Learning to Control at Multiple Time Scales.
ICANN 2003: 479-487 |
7 | | Ralf Schoknecht,
Artur Merke:
TD(0) Converges Provably Faster than the Residual Gradient Algorithm.
ICML 2003: 680-687 |
6 | EE | Ralf Schoknecht,
Martin Riedmiller:
Reinforcement learning on explicitly specified time scales.
Neural Computing and Applications 12(2): 61-80 (2003) |
2002 |
5 | EE | Thomas Ragg,
Frank Padberg,
Ralf Schoknecht:
Applying Machine Learning to Solve an Estimation Problem in Software Inspections.
ICANN 2002: 516-521 |
4 | EE | Ralf Schoknecht,
Martin A. Riedmiller:
Speeding-up Reinforcement Learning with Multi-step Actions.
ICANN 2002: 813-818 |
3 | | Artur Merke,
Ralf Schoknecht:
A Necessary Condition of Convergence for Reinforcement Learning with Function Approximation.
ICML 2002: 411-418 |
2 | EE | Ralf Schoknecht:
Optimality of Reinforcement Learning Algorithms with Linear Function Approximation.
NIPS 2002: 1555-1562 |
1 | EE | Ralf Schoknecht,
Artur Merke:
Convergent Combinations of Reinforcement Learning with Linear Function Approximation.
NIPS 2002: 1579-1586 |