1999 | ||
---|---|---|
12 | EE | Robert Davis, Armand Prieditis: Designing Optimal Sequential Experiments for a Bayesian Classifier. IEEE Trans. Pattern Anal. Mach. Intell. 21(3): 193-201 (1999) |
1998 | ||
11 | Armand Prieditis: Depth-First Branch-and-Bound vs. Depth-Bounded IDA*. Computational Intelligence 14: 188-206 (1998) | |
10 | Armand Prieditis, Evan Fletcher: Two-agent IDA*. J. Exp. Theor. Artif. Intell. 10(4): 451-485 (1998) | |
1997 | ||
9 | Armand Prieditis: Adding upper-bound pruning to IDA*. J. Exp. Theor. Artif. Intell. 9(1): 67-81 (1997) | |
1995 | ||
8 | EE | Armand Prieditis, Robert Davis: Quantitatively Relating Abstractness to the Accuracy of Admissible Heuristics. Artif. Intell. 74(1): 165-175 (1995) |
1993 | ||
7 | Armand Prieditis, Bhaskar Janakiraman: Generating Effective Admissible Heuristics by Abstraction and Reconstitution. AAAI 1993: 743-748 | |
6 | Robert Davis, Armand Prieditis: The Expected Length of a Shortest Path. Inf. Process. Lett. 46(3): 135-141 (1993) | |
5 | Armand Prieditis: Machine Discovery of Effective Admissible Heuristics. Machine Learning 12: 117-141 (1993) | |
1991 | ||
4 | Armand Prieditis: Machine Discovery of Effective Admissible Heuristics. IJCAI 1991: 720-725 | |
1989 | ||
3 | Jack Mostow, Armand Prieditis: Discovering Admissible Heuristics by Abstracting and Optimizing: A Transformational Approach. IJCAI 1989: 701-707 | |
2 | Jack Mostow, Armand Prieditis: Discovering Admissible Search Heuristics by Abstracting and Optimizing. ML 1989: 240-240 | |
1987 | ||
1 | Armand Prieditis, Jack Mostow: PROLEARN: Towards a Prolog Interpreter that Learns. AAAI 1987: 494-498 |
1 | Robert Davis | [6] [8] [12] |
2 | Evan Fletcher | [10] |
3 | Bhaskar Janakiraman | [7] |
4 | Jack Mostow | [1] [2] [3] |