2007 |
23 | EE | Boleslaw Z. Kacewicz,
Leszek Plaskota,
Grzegorz W. Wasilkowski:
Issue dedicated to Professor Henryk Wozniakowski.
J. Complexity 23(4-6): 421-422 (2007) |
2006 |
22 | EE | Leszek Plaskota,
Ian H. Sloan:
Guest Editors' preface.
J. Complexity 22(5): (2006) |
2005 |
21 | | Mark A. Kon,
Leszek Plaskota,
Andrzej W. Przybyszewski:
Statistical Likelihood Representations of Prior Knowledge in Machine Learning.
Artificial Intelligence and Applications 2005: 467-472 |
20 | | Mark A. Kon,
Leszek Plaskota,
Andrzej W. Przybyszewski:
Machine Learning and Statistical MAP Methods.
Intelligent Information Systems 2005: 441-445 |
19 | EE | Mark A. Kon,
Leszek Plaskota:
Information-based nonlinear approximation: an average case setting.
J. Complexity 21(2): 211-229 (2005) |
2004 |
18 | EE | Leszek Plaskota:
Information-Based Nonlinear Approximation: An Average Case Setting.
Algorithms and Complexity for Continuous Problems 2004 |
17 | EE | Leszek Plaskota,
Klaus Ritter,
Grzegorz W. Wasilkowski:
Optimal designs for weighted approximation and integration of stochastic processes on [0, infinity).
J. Complexity 20(1): 108-131 (2004) |
16 | EE | Leszek Plaskota,
Klaus Ritter:
Guest Editors' Preface.
J. Complexity 20(5): 592 (2004) |
15 | | Piotr Gajda,
Youming Li,
Leszek Plaskota,
Grzegorz W. Wasilkowski:
A Monte Carlo algorithm for weighted integration over Reald.
Math. Comput. 73(246): 813-825 (2004) |
2002 |
14 | EE | Leszek Plaskota,
Klaus Ritter,
Grzegorz W. Wasilkowski:
Average Case Complexity of Weighted Approximation and Integration over R+.
J. Complexity 18(2): 517-544 (2002) |
2001 |
13 | EE | Mark A. Kon,
Leszek Plaskota:
Complexity of Neural Network Approximation with Limited Information: A Worst Case Approach.
J. Complexity 17(2): 345-365 (2001) |
12 | EE | Leszek Plaskota,
Grzegorz W. Wasilkowski:
The Exact Exponent of Sparse Grid Quadratures in the Weighted Case.
J. Complexity 17(4): 840-849 (2001) |
2000 |
11 | EE | Leszek Plaskota:
The exponent of discrepancy of sparse grids is at least 2.1933.
Adv. Comput. Math. 12(1): 3-24 (2000) |
10 | EE | Mark A. Kon,
Leszek Plaskota:
Information complexity of neural networks.
Neural Networks 13(3): 365-375 (2000) |
1996 |
9 | EE | Leszek Plaskota:
How to Benefit from Noise.
J. Complexity 12(2): 175-184 (1996) |
8 | EE | Leszek Plaskota:
Worst Case Complexity of Problems with Random Information Noise.
J. Complexity 12(4): 416-439 (1996) |
1995 |
7 | EE | Leszek Plaskota:
Average Complexity for Linear Problems in a Model with Varying Information Noise.
J. Complexity 11(2): 240-264 (1995) |
1993 |
6 | EE | Boleslaw Z. Kacewicz,
Leszek Plaskota:
The Minimal Cost of Approximating Linear Operators Using Perturbed Information-The Asymptotic Setting.
J. Complexity 9(1): 113-134 (1993) |
5 | EE | Leszek Plaskota:
A Note on Varying Cardinality in the Average Case Setting.
J. Complexity 9(4): 458-470 (1993) |
1992 |
4 | EE | Leszek Plaskota:
Function approximation and integration on the wiener space with noisy data.
J. Complexity 8(3): 301-323 (1992) |
1991 |
3 | EE | Boleslaw Z. Kacewicz,
Leszek Plaskota:
Noisy information for linear problems in the asymptotic setting.
J. Complexity 7(1): 35-57 (1991) |
1990 |
2 | EE | Leszek Plaskota:
On average case complexity of linear problems with noisy information.
J. Complexity 6(2): 199-230 (1990) |
1989 |
1 | EE | Leszek Plaskota:
Asymptotic error for the global maximum of functions in s dimensions.
J. Complexity 5(3): 369-378 (1989) |