![]() |
| 2008 | ||
|---|---|---|
| 17 | EE | Jakub Gismatullin, Ludomir Newelski: G-compactness and groups. Arch. Math. Log. 47(5): 479-501 (2008) |
| 2003 | ||
| 16 | EE | Ludomir Newelski: Very simple theories without forking. Arch. Math. Log. 42(6): 601-16 (2003) |
| 2002 | ||
| 15 | Ludomir Newelski: Modular Types in Some Supersimple Theories. J. Symb. Log. 67(4): 1601-1615 (2002) | |
| 14 | Krzysztof Krupinski, Ludomir Newelski: On Bounded Type-Definable Equivalence Relations. Notre Dame Journal of Formal Logic 43(4): 231-242 (2002) | |
| 2001 | ||
| 13 | Ludomir Newelski: Small Profinite Groups. J. Symb. Log. 66(2): 859-872 (2001) | |
| 1999 | ||
| 12 | Ludomir Newelski: Flat Morley Sequences. J. Symb. Log. 64(3): 1261-1279 (1999) | |
| 11 | Ludomir Newelski: Geometry of *-Finite Types. J. Symb. Log. 64(4): 1375-1395 (1999) | |
| 1996 | ||
| 10 | Ludomir Newelski: On Atomic or Saturated Sets. J. Symb. Log. 61(1): 318-333 (1996) | |
| 1995 | ||
| 9 | Ludomir Newelski: A Model and Its Subset: The Uncountable Case. Ann. Pure Appl. Logic 71(2): 107-129 (1995) | |
| 1994 | ||
| 8 | Ludomir Newelski: Meager Forking. Ann. Pure Appl. Logic 70(2): 141-175 (1994) | |
| 1993 | ||
| 7 | Ludomir Newelski: Scott Analysis of Pseudotypes. J. Symb. Log. 58(2): 648-663 (1993) | |
| 1992 | ||
| 6 | Ludomir Newelski: A Model and Its Subset. J. Symb. Log. 57(2): 644-658 (1992) | |
| 1991 | ||
| 5 | Ludomir Newelski: On Type Definable Subgroups of a Stable Group. Notre Dame Journal of Formal Logic 32(2): 173-187 (1991) | |
| 1990 | ||
| 4 | Ludomir Newelski: Weakly Minimal Formulas: A Global Approach. Ann. Pure Appl. Logic 46(1): 65-94 (1990) | |
| 3 | Ludomir Newelski: Omitting Types for Stable CCC Theories. J. Symb. Log. 55(3): 1037-1047 (1990) | |
| 1987 | ||
| 2 | Ludomir Newelski: On Partitions of the Real Line Into Compact Sets. J. Symb. Log. 52(2): 353-359 (1987) | |
| 1 | Ludomir Newelski: Omitting Types and the Real Line. J. Symb. Log. 52(4): 1020-1026 (1987) | |
| 1 | Jakub Gismatullin | [17] |
| 2 | Krzysztof Krupinski | [14] |