2007 |
19 | EE | A. J. Feelders,
Robert van Straalen:
Parameter Learning for Bayesian Networks with Strict Qualitative Influences.
IDA 2007: 48-58 |
2006 |
18 | EE | A. J. Feelders,
Jevgenijs Ivanovs:
Discriminative Scoring of Bayesian Network Classifiers: a Comparative Study.
Probabilistic Graphical Models 2006: 75-82 |
17 | EE | A. J. Feelders,
Linda C. van der Gaag:
Learning Bayesian network parameters under order constraints.
Int. J. Approx. Reasoning 42(1-2): 37-53 (2006) |
2005 |
16 | | A. Fazel Famili,
Joost N. Kok,
José María Peña,
Arno Siebes,
A. J. Feelders:
Advances in Intelligent Data Analysis VI, 6th International Symposium on Intelligent Data Analysis, IDA 2005, Madrid, Spain, September 8-10, 2005, Proceedings
Springer 2005 |
15 | EE | Arno Siebes,
Muhammad Subianto,
A. J. Feelders:
Instability of Classifiers on Categorical Data.
ICDM 2005: 769-772 |
14 | EE | Eveline M. Helsper,
Linda C. van der Gaag,
A. J. Feelders,
Willie Loeffen,
Petra L. Geenen,
Armin Elbers:
Bringing order into bayesian-network construction.
K-CAP 2005: 121-128 |
13 | EE | A. J. Feelders,
Linda C. van der Gaag:
Learning Bayesian Network Parameters with Prior Knowledge about Context-Specific Qualitative Influences.
UAI 2005: 193-200 |
12 | EE | Michael Egmont-Petersen,
A. J. Feelders,
Bart Baesens:
Confidence intervals for probabilistic network classifiers.
Computational Statistics & Data Analysis 49(4): 998-1019 (2005) |
2004 |
11 | EE | Linda C. van der Gaag,
Hans L. Bodlaender,
A. J. Feelders:
Monotonicity in Bayesian Networks.
UAI 2004: 569-576 |
2003 |
10 | EE | A. J. Feelders,
Martijn Pardoel:
Pruning for Monotone Classification Trees.
IDA 2003: 1-12 |
2002 |
9 | EE | Rob Potharst,
A. J. Feelders:
Classification trees for problems with monotonicity constraints.
SIGKDD Explorations 4(1): 1-10 (2002) |
2001 |
8 | EE | Robert Castelo,
A. J. Feelders,
Arno Siebes:
MAMBO: Discovering Association Rules Based on Conditional Independencies.
IDA 2001: 289-298 |
2000 |
7 | EE | A. J. Feelders:
Prior Knowledge in Economic Applications of Data Mining.
PKDD 2000: 395-400 |
1999 |
6 | | A. J. Feelders:
Handling Missing Data in Trees: Surrogate Splits or Statistical Imputation.
PKDD 1999: 329-334 |
1998 |
5 | | A. J. Feelders,
Soong Chang,
Geoffrey J. McLachlan:
Mining in the Presence of Selectivity Bias and its Application to Reject Inference.
KDD 1998: 199-203 |
4 | EE | Jack P. C. Kleijnen,
A. J. Feelders,
Russell C. H. Cheng:
Bootstrapping and Validation of Metamodels in Simulation.
Winter Simulation Conference 1998: 701-705 |
1996 |
3 | | A. J. Feelders:
Data mining and related techniques.
EUROSIM 1996: 521-527 |
2 | | A. J. Feelders:
Learning from Biased Data Using Mixture Models.
KDD 1996: 102-107 |
1995 |
1 | | A. J. Feelders,
A. J. F. le Loux,
J. W. van't Zand:
Data Mining for Loan Evaluation at ABN AMRO: A Case Study.
KDD 1995: 106-111 |