2008 |
66 | EE | Takayuki Sato,
Kazuyuki Amano,
Eiji Takimoto,
Akira Maruoka:
Monotone DNF Formula That Has a Minimal or Maximal Number of Satisfying Assignments.
COCOON 2008: 191-203 |
2007 |
65 | EE | Kazuyuki Amano,
Akira Maruoka:
Better upper bounds on the QOBDD size of integer multiplication.
Discrete Applied Mathematics 155(10): 1224-1232 (2007) |
2006 |
64 | EE | Takayuki Sato,
Kazuyuki Amano,
Akira Maruoka:
On the Negation-Limited Circuit Complexity of Sorting and Inverting k-tonic Sequences.
COCOON 2006: 104-115 |
63 | EE | Shigeaki Harada,
Eiji Takimoto,
Akira Maruoka:
Aggregating Strategy for Online Auctions.
COCOON 2006: 33-41 |
62 | EE | Kazuyuki Amano,
Akira Maruoka:
The Monotone Circuit Complexity of Quadratic Boolean Functions.
Algorithmica 46(1): 3-14 (2006) |
61 | EE | Shigeaki Harada,
Eiji Takimoto,
Akira Maruoka:
Online Allocation with Risk Information.
IEICE Transactions 89-D(8): 2340-2347 (2006) |
60 | EE | Kazuyuki Amano,
Akira Maruoka:
On learning monotone Boolean functions under the uniform distribution.
Theor. Comput. Sci. 350(1): 3-12 (2006) |
2005 |
59 | EE | Shigeaki Harada,
Eiji Takimoto,
Akira Maruoka:
Online Allocation with Risk Information.
ALT 2005: 343-355 |
58 | EE | Kazuyuki Amano,
Akira Maruoka:
On the Complexity of Depth-2 Circuits with Threshold Gates.
MFCS 2005: 107-118 |
57 | EE | Kazuyuki Amano,
Akira Maruoka:
A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)log log n Negation Gates.
SIAM J. Comput. 35(1): 201-216 (2005) |
2004 |
56 | | Shai Ben-David,
John Case,
Akira Maruoka:
Algorithmic Learning Theory, 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004, Proceedings
Springer 2004 |
55 | EE | Eiji Takimoto,
Syuhei Koya,
Akira Maruoka:
Boosting Based on Divide and Merge.
ALT 2004: 127-141 |
54 | EE | Kazuyuki Amano,
Akira Maruoka:
On the Monotone Circuit Complexity of Quadratic Boolean Functions.
ISAAC 2004: 28-40 |
53 | EE | Kazuyuki Amano,
Akira Maruoka:
Better Simulation of Exponential Threshold Weights by Polynomial Weights
Electronic Colloquium on Computational Complexity (ECCC)(090): (2004) |
52 | EE | Kazuyuki Amano,
Akira Maruoka:
The Potential of the Approximation Method.
SIAM J. Comput. 33(2): 433-447 (2004) |
2003 |
51 | EE | Kazuyuki Amano,
Akira Maruoka:
Some Properties of MODm Circuits Computing Simple Functions.
CIAC 2003: 227-237 |
50 | EE | Kazuyuki Amano,
Akira Maruoka:
On Optimal Merging Networks.
MFCS 2003: 152-161 |
49 | | Kazuyuki Amano,
Akira Maruoka,
Jun Tarui:
On the negation-limited circuit complexity of merging.
Discrete Applied Mathematics 126(1): 3-8 (2003) |
48 | EE | Kazuyuki Amano,
Kazuo Iwama,
Akira Maruoka,
Kenshi Matsuo,
Akihiro Matsuura:
Inclusion-exclusion for k-CNF formulas.
Inf. Process. Lett. 87(2): 111-117 (2003) |
47 | | Eiji Takimoto,
Akira Maruoka:
Top-down decision tree learning as information based boosting.
Theor. Comput. Sci. 292(2): 447-464 (2003) |
2002 |
46 | EE | Kazuyuki Amano,
Akira Maruoka:
On Learning Monotone Boolean Functions under the Uniform Distribution.
ALT 2002: 57-68 |
45 | EE | Akira Maruoka,
Eiji Takimoto:
On-Line Algorithm to Predict Nearly as Well as the Best Pruning of a Decision Tree.
Progress in Discovery Science 2002: 296-306 |
44 | EE | Eiji Takimoto,
Akira Maruoka:
Top-Down Decision Tree Boosting and Its Applications.
Progress in Discovery Science 2002: 327-337 |
2001 |
43 | EE | Kazuyuki Amano,
Tsukuru Hirosawa,
Yusuke Watanabe,
Akira Maruoka:
The Computational Power of a Family of Decision Forests.
MFCS 2001: 123-134 |
42 | EE | Eiji Takimoto,
Akira Maruoka,
Volodya Vovk:
Predicting nearly as well as the best pruning of a decision tree through dynamic programming scheme.
Theor. Comput. Sci. 261(1): 179-209 (2001) |
2000 |
41 | EE | Jun Mizuno,
Tasuya Watanabe,
Kazuya Ueki,
Kazuyuki Amano,
Eiji Takimoto,
Akira Maruoka:
On-Line Estimation of Hidden Markov Model Parameters.
Discovery Science 2000: 155-169 |
40 | EE | Eiji Takimoto,
Yoshifumi Sakai,
Akira Maruoka:
The learnability of exclusive-or expansions based on monotone DNF formulas.
Theor. Comput. Sci. 241(1-2): 37-50 (2000) |
39 | EE | Yoshifumi Sakai,
Akira Maruoka:
Learning Monotone Log-Term DNF Formulas under the Uniform Distribution.
Theory Comput. Syst. 33(1): 17-33 (2000) |
1999 |
38 | EE | Kazuyuki Amano,
Akira Maruoka,
Jun Tarui:
On the Negation-Limited Circuit Complexity of Merging.
COCOON 1999: 204-209 |
37 | | Yoshifumi Sakai,
Eiji Takimoto,
Akira Maruoka:
Proper Learning Algorithm for Functions of k Terms under Smooth Distributions.
Inf. Comput. 152(2): 188-204 (1999) |
1998 |
36 | EE | Akira Maruoka,
Eiji Takimoto:
Structured Weight-Based Prediction Algorithms.
ALT 1998: 127-142 |
35 | EE | Eiji Takimoto,
Akira Maruoka:
On the Boosting Algorithm for Multiclass Functions Based on Information-Theoretic Criterion for Approxiamtion.
Discovery Science 1998: 256-267 |
34 | EE | Kazuyuki Amano,
Akira Maruoka:
A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with At Most (1/6) log log n Negation Gates.
MFCS 1998: 399-408 |
33 | | Akira Maruoka,
Mike Paterson,
Hirotaka Koizumi:
Consistency of Natural Relations on Sets.
Combinatorics, Probability & Computing 7(3): 281-293 (1998) |
1997 |
32 | | Ming Li,
Akira Maruoka:
Algorithmic Learning Theory, 8th International Conference, ALT '97, Sendai, Japan, October 6-8, 1997, Proceedings
Springer 1997 |
31 | | Eiji Takimoto,
Ken'ichi Hirai,
Akira Maruoka:
A Simple Algorithm for Predicting Nearly as Well as the Best Pruning Labeled with the Best Prediction Values of a Decision Tree.
ALT 1997: 385-400 |
30 | EE | Eiji Takimoto,
Akira Miyashiro,
Akira Maruoka,
Yoshifumi Sakai:
Learning Orthogonal F-Horn Formulas.
Theor. Comput. Sci. 185(1): 177-190 (1997) |
29 | | Kazuyuki Amano,
Akira Maruoka:
Approximation Algorithms for DNF Under Distributions with Limited Independence.
Theory Comput. Syst. 30(2): 181-196 (1997) |
1996 |
28 | | Eiji Takimoto,
Yoshifumi Sakai,
Akira Maruoka:
Learnability of Exclusive-Or Expansion Based on Monotone DNF Formulas.
ALT 1996: 12-25 |
27 | | Kazuyuki Amano,
Akira Maruoka:
Potential of the Approximation Method (extended abstract).
FOCS 1996: 431-440 |
26 | | Shuji Jimbo,
Akira Maruoka:
A Method of Constructing Selection Networks with O(log n) Depth.
SIAM J. Comput. 25(4): 709-739 (1996) |
1995 |
25 | | Akira Miyashiro,
Eiji Takimoto,
Yoshifumi Sakai,
Akira Maruoka:
Learning Orthogonal F-Horn Formulas.
ALT 1995: 110-122 |
24 | EE | Yoshifumi Sakai,
Eiji Takimoto,
Akira Maruoka:
Proper Learning Algorithm for Functions of k Terms Under Smooth Distributions.
COLT 1995: 206-213 |
23 | | Katsutoshi Nakayama,
Akira Maruoka:
Loop Circuits and Their Relation to Razborov's Approximation Model
Inf. Comput. 119(2): 154-159 (1995) |
1994 |
22 | | Eiji Takimoto,
Ichiro Tajika,
Akira Maruoka:
Mutual Information Gaining Algorithm and Its Relation to PAC-Learning Algorithm.
AII/ALT 1994: 547-559 |
21 | EE | Yoshifumi Sakai,
Akira Maruoka:
Learning Monotone Log-Term DNF Formulas.
COLT 1994: 165-172 |
20 | | Shuji Jimbo,
Akira Maruoka:
On the Relationship Between the Diameter and the Size of a Boundary of a Directed Graph.
Inf. Process. Lett. 50(5): 277-282 (1994) |
19 | | Shuji Jimbo,
Akira Maruoka:
On the Relationship Between varepsilon-Biased Random Variables and varepsilon-Dependent Random Variables.
Inf. Process. Lett. 51(1): 17-23 (1994) |
1993 |
18 | | Eiji Takimoto,
Akira Maruoka:
On the Sample Complexity of Consistent Learning with One-Sided Error.
ALT 1993: 265-278 |
17 | EE | Eiji Takimoto,
Akira Maruoka:
Conservativeness and Monotonicity for Learning Algorithms.
COLT 1993: 377-383 |
1992 |
16 | | Yoshifumi Sakai,
Akira Maruoka:
Learning k-Term Monotone Boolean Formulae.
ALT 1992: 197-207 |
15 | | Shuji Jimbo,
Akira Maruoka:
Selection Networks with 8n log2n Size and O(log n) Depth.
ISAAC 1992: 165-174 |
14 | | Qian-Ping Gu,
Akira Maruoka:
Learning Monotone Boolean Functions by Uniformly Distributed Examples.
SIAM J. Comput. 21(3): 587-599 (1992) |
1991 |
13 | | Qian-Ping Gu,
Akira Maruoka:
Amplification of Bounded Depth Monotone Read-Once Boolean Formulae.
SIAM J. Comput. 20(1): 41-55 (1991) |
1987 |
12 | | Shuji Jimbo,
Akira Maruoka:
Expanders obtained from affine transformations.
Combinatorica 7(4): 343-355 (1987) |
1986 |
11 | | Akira Maruoka:
Complexity Based on Partitioning of Boolean Circuits and Their Relation to Multivalued Circuits.
IEEE Trans. Computers 35(2): 115-123 (1986) |
1985 |
10 | | Shuji Jimbo,
Akira Maruoka:
Expanders Obtained from Affine Transformations (Preliminary Version)
STOC 1985: 88-97 |
1983 |
9 | | Akira Maruoka:
Open Maps for Tessellation Automata.
Theor. Comput. Sci. 27: 217-224 (1983) |
1982 |
8 | | Akira Maruoka,
Masayuki Kimura:
Strong Surjectivity is Equivalent to C-Injectivity.
Theor. Comput. Sci. 18: 269-277 (1982) |
1981 |
7 | | Akira Maruoka,
Masayuki Kimura,
Nobuyoshi Shoji:
Pattern Decomposition for Tessellation Automata.
Theor. Comput. Sci. 14: 211-226 (1981) |
1979 |
6 | | Akira Maruoka,
Masayuki Kimura:
Injectivity and Surjectivity of Parallel Maps for Cellular Automata.
J. Comput. Syst. Sci. 18(1): 47-64 (1979) |
1977 |
5 | | Akira Maruoka,
Masayuki Kimura:
Decomposition Phenomenon in One-Dimensional Scope-Three Tessellation Automata with Arbitrary Number of States
Information and Control 34(4): 296-313 (1977) |
4 | | Akira Maruoka,
Masayuki Kimura:
Completeness Problem of Multidimensional Tessellation Automata
Information and Control 35(1): 52-86 (1977) |
1976 |
3 | | Akira Maruoka,
Masayuki Kimura:
Condition for Injectivity of Global Maps for Tessellation Automata
Information and Control 32(2): 158-162 (1976) |
1975 |
2 | | Akira Maruoka,
Namio Honda:
The Range of Logical Flexibility of Tree Networks.
IEEE Trans. Computers 24(1): 9-28 (1975) |
1974 |
1 | | Akira Maruoka,
Masayuki Kimura:
Completeness Problem of One-Dimensional Binary Scope-3 Tessellation Automata.
J. Comput. Syst. Sci. 9(1): 31-47 (1974) |