Charles C. Lindner
List of publications from the
2009 |
38 | EE | Charles Curtis Lindner,
Gaetano Quattrocchi,
Christopher A. Rodger:
Embedding Steiner triple systems in hexagon triple systems.
Discrete Mathematics 309(2): 487-490 (2009) |
2008 |
37 | EE | Charles Curtis Lindner,
Alexander Rosa:
Perfect dexagon triple systems.
Discrete Mathematics 308(2-3): 214-219 (2008) |
2005 |
36 | | Charles C. Lindner,
Antoinette Tripodi:
The Metamorphosis of K4\e Designs Into Maximum Packings Of Kn With 4-Cycles.
Ars Comb. 75: (2005) |
35 | | Charles Curtis Lindner,
Emine Sule Yazici:
The Triangle Intersection Problem for Kite Systems.
Ars Comb. 75: (2005) |
2004 |
34 | EE | Selda Küçükçifçi,
Charles C. Lindner:
Minimum Covering for Hexagon Triple Systems.
Des. Codes Cryptography 32(1-3): 251-265 (2004) |
33 | EE | Selda Küçükçifçi,
Charles C. Lindner,
Alexander Rosa:
The metamorphosis of lambda-fold block designs with block size four into a maximum packing of lambdaKn with 4-cycles.
Discrete Mathematics 278(1-3): 175-193 (2004) |
32 | EE | Selda Küçükçifçi,
Charles C. Lindner:
Perfect hexagon triple systems.
Discrete Mathematics 279(1-3): 325-335 (2004) |
2003 |
31 | EE | Dean G. Hoffman,
Charles Curtis Lindner,
Christopher A. Rodger:
A partial 2k-cycle system of order n can be embedded in a 2k-cycle system of order kn+c(k), kgeq3, where c(k) is a quadratic function of k.
Discrete Mathematics 261(1-3): 325-336 (2003) |
30 | EE | Charles Curtis Lindner,
Christopher A. Rodger:
A connection between varieties of quasigroups and graph decompositions.
Discrete Mathematics 272(2-3): 127-137 (2003) |
29 | | Charles Curtis Lindner:
A Small Embedding for Partial 4-Cycle Systems when the Leave is Small.
Journal of Automata, Languages and Combinatorics 8(4): 659-662 (2003) |
2002 |
28 | EE | Charles Curtis Lindner,
Lorenzo Milazzo:
Embedding partial bipartite directed cycle systems.
Discrete Mathematics 244(1-3): 269-278 (2002) |
27 | EE | F. Franek,
Terry S. Griggs,
Charles C. Lindner,
Alexander Rosa:
Completing the spectrum of 2-chromatic S(2, 4, v).
Discrete Mathematics 247(1-3): 225-228 (2002) |
2000 |
26 | EE | Peter Adams,
Elizabeth J. Billington,
Italo J. Dejter,
Charles Curtis Lindner:
The number of 4-cycles in 2-factorizations of K2n minus a 1-factor.
Discrete Mathematics 220(1-3): 1-11 (2000) |
1998 |
25 | EE | H. L. Fu,
Charles C. Lindner,
C. A. Rodger:
Two Doyen-Wilson theorems for maximum packings with triples.
Discrete Mathematics 178(1-3): 63-71 (1998) |
24 | EE | H. L. Fu,
Charles C. Lindner:
The Doyen-Wilson theorem for maximum packings of Kn with 4-cycles.
Discrete Mathematics 183(1-3): 103-117 (1998) |
1997 |
23 | EE | Charles C. Lindner,
Christopher A. Rodger:
On equationally defining extended cycle systems, .
Discrete Mathematics 173(1-3): 1-14 (1997) |
1994 |
22 | EE | Elizabeth J. Billington,
Charles Curtis Lindner:
The spectrum for 2-perfect bowtie systems.
Discrete Mathematics 135(1-3): 61-68 (1994) |
1993 |
21 | EE | Charles C. Lindner,
C. A. Rodger:
A partial m=(2k+1)-cycle system of order n can be embedded in an m-cycle system of order (2n+1)m.
Discrete Mathematics 117(1-3): 151-159 (1993) |
1992 |
20 | EE | Charles C. Lindner,
C. A. Rodger:
2-perfect m-cycle systems.
Discrete Mathematics 104(1): 83-90 (1992) |
19 | EE | D. Chen,
Charles C. Lindner,
Douglas R. Stinson:
Further results on large sets of disjoint group-divisible designs.
Discrete Mathematics 110(1-3): 35-42 (1992) |
18 | | Charles J. Colbourn,
Charles C. Lindner:
Support Sizes of Triple Systems.
J. Comb. Theory, Ser. A 61(2): 193-210 (1992) |
1991 |
17 | EE | Dean G. Hoffman,
Charles C. Lindner,
Kevin T. Phelps:
Blocking sets in designs with block size four II.
Discrete Mathematics 89(3): 221-229 (1991) |
16 | EE | Charles Curtis Lindner,
Kevin T. Phelps,
Christopher A. Rodger:
The spectrum for 2-perfect 6-cycle systems.
J. Comb. Theory, Ser. A 57(1): 76-85 (1991) |
1990 |
15 | EE | Charles C. Lindner,
Christopher A. Rodger,
Douglas R. Stinson:
Small embeddings for partial cycle systems of odd length.
Discrete Mathematics 80(3): 273-280 (1990) |
1989 |
14 | EE | Charles C. Lindner,
Christopher A. Rodger,
Douglas R. Stinson:
Nesting of cycle systems of odd length.
Discrete Mathematics 77(1-3): 191-203 (1989) |
1988 |
13 | EE | Katherine Heinrich,
Charles Curtis Lindner,
Christopher A. Rodger:
Almost resolvable decompositions of 2Kn into cycles of odd length.
J. Comb. Theory, Ser. A 49(2): 218-232 (1988) |
1987 |
12 | EE | Charles C. Lindner:
Construction of large sets of pairwise disjoint transitive triple systems II.
Discrete Mathematics 65(1): 65-74 (1987) |
1984 |
11 | EE | Charles C. Lindner,
Douglas R. Stinson:
Steiner pentagon systems.
Discrete Mathematics 52(1): 67-74 (1984) |
1981 |
10 | | Charles C. Lindner:
On the Number of Disjoint Mendelsohn Triple Systems.
J. Comb. Theory, Ser. A 30(3): 326-330 (1981) |
1980 |
9 | EE | Charles C. Lindner,
N. S. Mendelsohn,
S. R. Sun:
On the construction of Schroeder quasigroups.
Discrete Mathematics 32(3): 271-280 (1980) |
1979 |
8 | | Ronald C. Mullin,
Charles Curtis Lindner:
Lower Bounds for Maximal Partial Parallel Classes in Steiner Systems.
J. Comb. Theory, Ser. A 26(3): 314-318 (1979) |
1977 |
7 | | Charles C. Lindner,
Alexander Rosa:
A Partial Room Square Can be Embedded in a Room Square.
J. Comb. Theory, Ser. A 22(1): 97-102 (1977) |
1976 |
6 | | Charles C. Lindner:
A Finite Partial Idempotent Latin Cube Can Be Embedded in a Finite Idempotent Latin Cube.
J. Comb. Theory, Ser. A 21(1): 104-109 (1976) |
5 | | Charles C. Lindner:
Steiner Quadruple Systems All of Whose Derived Steiner Triple Systems Are Nonisomorphic.
J. Comb. Theory, Ser. A 21(1): 35-43 (1976) |
1975 |
4 | | Charles C. Lindner:
Disjoint Finite Partial Steiner Triple Systems Can Be Embedded in Disjoint Finite Steiner Triple Systems.
J. Comb. Theory, Ser. A 18(1): 126-129 (1975) |
3 | | Charles C. Lindner:
A Partial Steiner Triple System of Order n Can Be Embedded in a Steiner Triple System of Order 6n + 3.
J. Comb. Theory, Ser. A 18(3): 349-351 (1975) |
1974 |
2 | | Charles C. Lindner:
A Simple Construction of Disjoint and Almost Disjoint Steiner Triple Systems.
J. Comb. Theory, Ser. A 17(2): 204-209 (1974) |
1972 |
1 | | Charles C. Lindner:
Finite Embedding Theorems for Partial Latin Squares, Quasi-groups, and Loops.
J. Comb. Theory, Ser. A 13(3): 339-345 (1972) |