2007 |
14 | EE | Du Cheol Gang,
Seung Il Han,
Byung-Gook Lee,
Joon-Jae Lee:
Keypad Inspection System of Cellular Phone.
CGIV 2007: 93-96 |
13 | EE | Nam Woo Kim,
Seung Jae Lee,
Byung-Gook Lee,
Joon-Jae Lee:
Vision Based Laser Pointer Interaction for Flexible Screens.
HCI (2) 2007: 845-853 |
12 | EE | Kwan Pyo Ko,
Byung-Gook Lee,
Gang Joon Yoon:
A study on the mask of interpolatory symmetric subdivision schemes.
Applied Mathematics and Computation 187(2): 609-621 (2007) |
11 | EE | Kwan Pyo Ko,
Byung-Gook Lee,
Gang Joon Yoon:
A ternary 4-point approximating subdivision scheme.
Applied Mathematics and Computation 190(2): 1563-1573 (2007) |
2006 |
10 | EE | Yoo-Joo Choi,
Yeon Ju Lee,
Jungho Yoon,
Byung-Gook Lee,
Young J. Kim:
A New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials.
GMP 2006: 563-570 |
9 | EE | Byung-Gook Lee,
Yeon Ju Lee,
Jungho Yoon:
Stationary binary subdivision schemes using radial basis function interpolation.
Adv. Comput. Math. 25(1-3): 57-72 (2006) |
8 | EE | Abedallah Rababah,
Byung-Gook Lee,
Jaechil Yoo:
A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations.
Applied Mathematics and Computation 181(1): 310-318 (2006) |
7 | EE | Sung Woo Choi,
Byung-Gook Lee,
Yeon Ju Lee,
Jungho Yoon:
Stationary subdivision schemes reproducing polynomials.
Computer Aided Geometric Design 23(4): 351-360 (2006) |
2005 |
6 | EE | Byung-Gook Lee,
Joon-Jae Lee,
Jaechil Yoo:
An Efficient Scattered Data Approximation Using Multilevel B-Splines Based on Quasi-Interpolants.
3DIM 2005: 110-117 |
5 | EE | Byung-Gook Lee,
Joon-Jae Lee,
Ki-Ryoung Kwon:
Quasi-interpolants Based Multilevel B-Spline Surface Reconstruction from Scattered Data.
ICCSA (3) 2005: 1209-1218 |
4 | EE | Soon-Jeong Ahn,
Jaechil Yoo,
Byung-Gook Lee,
Joon-Jae Lee:
3D Surface Reconstruction from Scattered Data Using Moving Least Square Method.
ICIAP 2005: 719-726 |
2004 |
3 | EE | Young Joon Ahn,
Byung-Gook Lee,
Yunbeom Park,
Jaechil Yoo:
Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients.
Computer Aided Geometric Design 21(2): 181-191 (2004) |
2002 |
2 | EE | Byung-Gook Lee,
Yunbeom Park,
Jaechil Yoo:
Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction.
Computer Aided Geometric Design 19(9): 709-718 (2002) |
1993 |
1 | | Byung-Gook Lee,
Ki Yong Lee,
Souguil Ann,
Iickho Song:
A sequential algorithm for robust parameter estimation and enhancement of noisy speech.
ISCAS 1993: 243-246 |