1998 |
19 | EE | Long-Ji Lin,
Thomas R. Hancock,
J. Stephen Judd:
A robust landmark-based system for vehicle location using low-bandwidth vision.
Robotics and Autonomous Systems 25(1-2): 19-32 (1998) |
1996 |
18 | | Thomas R. Hancock,
Tao Jiang,
Ming Li,
John Tromp:
Lower Bounds on Learning Decision Lists and Trees.
Inf. Comput. 126(2): 114-122 (1996) |
17 | | Nader H. Bshouty,
Sally A. Goldman,
Thomas R. Hancock,
Sleiman Matar:
Asking Questions to Minimize Errors.
J. Comput. Syst. Sci. 52(2): 268-286 (1996) |
16 | | Thomas R. Hancock:
Guest Editor's Introduction.
Machine Learning 25(2-3): 115-116 (1996) |
15 | EE | Mostefa Golea,
Mario Marchand,
Thomas R. Hancock:
On learning ?-perceptron networks on the uniform distribution.
Neural Networks 9(1): 67-82 (1996) |
1995 |
14 | | Thomas R. Hancock,
Tao Jiang,
Ming Li,
John Tromp:
Lower Bounds on Learning Decision Lists and Trees (Extended Abstract).
STACS 1995: 527-538 |
13 | | Nader H. Bshouty,
Thomas R. Hancock,
Lisa Hellerstein:
Learning Boolean Read-Once Formulas over Generalized Bases.
J. Comput. Syst. Sci. 50(3): 521-542 (1995) |
12 | | Nader H. Bshouty,
Thomas R. Hancock,
Lisa Hellerstein:
Learning Arithmetic Read-Once Formulas.
SIAM J. Comput. 24(4): 706-735 (1995) |
1994 |
11 | | Nader H. Bshouty,
Thomas R. Hancock,
Lisa Hellerstein,
Marek Karpinski:
An Algorithm to Learn Read-Once Threshold Formulas, and Transformations Between Learning Models.
Computational Complexity 4: 37-61 (1994) |
10 | | Thomas R. Hancock,
Mostefa Golea,
Mario Marchand:
Learning Nonoverlapping Perceptron Networks from Examples and Membership Queries.
Machine Learning 16(3): 161-183 (1994) |
1993 |
9 | EE | Thomas R. Hancock:
Learning kµ Decision Trees on the Uniform Distribution.
COLT 1993: 352-360 |
8 | EE | Nader H. Bshouty,
Sally A. Goldman,
Thomas R. Hancock,
Sleiman Matar:
Asking Questions to Minimize Errors.
COLT 1993: 41-50 |
1992 |
7 | EE | Nader H. Bshouty,
Thomas R. Hancock,
Lisa Hellerstein:
Learning Boolean Read-Once Formulas with Arbitrary Symmetric and Constant Fan-in Gates.
COLT 1992: 1-15 |
6 | EE | Mostefa Golea,
Mario Marchand,
Thomas R. Hancock:
On Learning µ-Perceptron Networks with Binary Weights.
NIPS 1992: 591-598 |
5 | | Nader H. Bshouty,
Thomas R. Hancock,
Lisa Hellerstein:
Learning Arithmetic Read-Once Formulas
STOC 1992: 370-381 |
1991 |
4 | EE | Thomas R. Hancock,
Yishay Mansour:
Learning Monotone kµ DNF Formulas on Product Distributions.
COLT 1991: 179-183 |
3 | EE | Thomas R. Hancock:
Learning 2µ DNF Formulas and kµ Decision Trees.
COLT 1991: 199-209 |
2 | EE | Thomas R. Hancock,
Lisa Hellerstein:
Learning Read-Once Formulas over Fields and Extended Bases.
COLT 1991: 326-336 |
1990 |
1 | EE | Thomas R. Hancock:
Identifying µ-Formula Decision Trees with Queries.
COLT 1990: 23-37 |