2008 | ||
---|---|---|
37 | EE | M. Michael Gromiha, Shandar Ahmad, Makiko Suwa: Neural network based prediction of protein structure and Function: Comparison with other machine learning methods. IJCNN 2008: 1739-1744 |
36 | EE | Y.-h. Taguchi, M. Michael Gromiha: Gene Ontology term prediction based upon amino acid occurrence. IJCNN 2008: 615-620 |
35 | EE | M. Michael Gromiha, Liang-Tsung Huang, Lien Fu Lai: Sequence Based Prediction of Protein Mutant Stability and Discrimination of Thermophilic Proteins. PRIB 2008: 1-12 |
34 | EE | Yu-Yen Ou, M. Michael Gromiha, Shu-An Chen, Makiko Suwa: TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles. Computational Biology and Chemistry 32(3): 227-231 (2008) |
33 | EE | Liang-Tsung Huang, M. Michael Gromiha: Analysis and prediction of protein folding rates using quadratic response surface models. Journal of Computational Chemistry 29(10): 1675-1683 (2008) |
2007 | ||
32 | EE | Y.-h. Taguchi, M. Michael Gromiha: Protein Fold Recognition Based Upon the Amino Acid Occurrence. PRIB 2007: 120-131 |
31 | EE | M. Michael Gromiha: Bioinformatics on beta-Barrel Membrane Proteins: Sequence and Structural Analysis, Discrimination and Prediction. PRIB 2007: 148-157 |
30 | EE | Liang-Tsung Huang, M. Michael Gromiha, Shinn-Ying Ho: iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 23(10): 1292-1293 (2007) |
29 | EE | M. Michael Gromiha, Yukimitsu Yabuki, Srinesh Kundu, Sivasundaram Suharnan, Makiko Suwa: TMBETA-GENOME: database for annotated ß-barrel membrane proteins in genomic sequences. Nucleic Acids Research 35(Database-Issue): 314-316 (2007) |
2006 | ||
28 | EE | Liang-Tsung Huang, M. Michael Gromiha, Shiow-Fen Hwang, Shinn-Ying Ho: Knowledge acquisition and development of accurate rules for predicting protein stability changes. Computational Biology and Chemistry 30(6): 408-415 (2006) |
27 | EE | M. Michael Gromiha, Samuel Selvaraj, A. Mary Thangakani: A Statistical Method for Predicting Protein Unfolding Rates from Amino Acid Sequence. Journal of Chemical Information and Modeling 46(3): 1503-1508 (2006) |
26 | EE | M. D. Shaji Kumar, M. Michael Gromiha: PINT: Protein-protein Interactions Thermodynamic Database. Nucleic Acids Research 34(Database-Issue): 195-198 (2006) |
25 | EE | M. D. Shaji Kumar, K. Abdulla Bava, M. Michael Gromiha, Ponraj Prabakaran, Koji Kitajima, Hatsuho Uedaira, Akinori Sarai: ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Research 34(Database-Issue): 204-206 (2006) |
24 | EE | Vijaya Parthiban, M. Michael Gromiha, Dietmar Schomburg: CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Research 34(Web-Server-Issue): 239-242 (2006) |
23 | EE | M. Michael Gromiha, A. Mary Thangakani, Samuel Selvaraj: FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Research 34(Web-Server-Issue): 70-74 (2006) |
2005 | ||
22 | EE | Keun-Joon Park, M. Michael Gromiha, Paul Horton, Makiko Suwa: Discrimination of outer membrane proteins using support vector machines. Bioinformatics 21(23): 4223-4229 (2005) |
21 | EE | M. Michael Gromiha, Makiko Suwa: A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics 21(7): 961-968 (2005) |
20 | EE | K. Saraboji, M. Michael Gromiha, Mon Nanjappa Ponnuswamy: Relative importance of secondary structure and solvent accessibility to the stability of protein mutants.: A case study with amino acid properties and energetics on T4 and human lysozymes. Computational Biology and Chemistry 29(1): 25-35 (2005) |
19 | EE | M. Michael Gromiha, Shandar Ahmad, Makiko Suwa: Application of residue distribution along the sequence for discriminating outer membrane proteins. Computational Biology and Chemistry 29(2): 135-142 (2005) |
18 | EE | Akinori Sarai, Jorg Siebers, Samuel Selvaraj, M. Michael Gromiha, Hidetoshi Kono: Integration of Bioinformatics and Computational Biology to Understand Protein-dna Recognition Mechanism. J. Bioinformatics and Computational Biology 3(1): 169-183 (2005) |
17 | EE | M. Michael Gromiha: A Statistical Model for Predicting Protein Folding Rates from Amino Acid Sequence with Structural Class Information. Journal of Chemical Information and Modeling 45(2): 494-501 (2005) |
16 | EE | M. Michael Gromiha, Shandar Ahmad, Makiko Suwa: TMBETA-NET: discrimination and prediction of membrane spanning ß-strands in outer membrane proteins. Nucleic Acids Research 33(Web-Server-Issue): 164-167 (2005) |
15 | EE | Csaba Magyar, M. Michael Gromiha, Gerard Pujadas, Gábor E. Tusnády, István Simon: SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Research 33(Web-Server-Issue): 303-305 (2005) |
2004 | ||
14 | EE | Akinori Sarai, Samuel Selvaraj, M. Michael Gromiha, Hidetoshi Kono: Structure-Function Relationship in DNA Sequence Recognition by Transcription Factors. APBC 2004: 233-238 |
13 | EE | Shandar Ahmad, M. Michael Gromiha, Hamed Fawareh, Akinori Sarai: ASAView: Database and tool for solvent accessibility representation in proteins. BMC Bioinformatics 5: 51 (2004) |
12 | EE | Shandar Ahmad, M. Michael Gromiha, Akinori Sarai: Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20(4): (2004) |
11 | EE | M. Michael Gromiha, Shandar Ahmad, Makiko Suwa: Neural network-based prediction of transmembrane -strand segments in outer membrane proteins. Journal of Computational Chemistry 25(5): 762-767 (2004) |
10 | K. Abdulla Bava, M. Michael Gromiha, Hatsuho Uedaira, Koji Kitajima, Akinori Sarai: ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Research 32(Database-Issue): 120-121 (2004) | |
2003 | ||
9 | Shandar Ahmad, M. Michael Gromiha, Akinori Sarai: RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinformatics 19(14): 1849-1851 (2003) | |
8 | EE | M. Michael Gromiha: Importance of Native-State Topology for Determining the Folding Rate of Two-State Proteins. Journal of Chemical Information and Computer Sciences 43(5): 1481-1485 (2003) |
7 | EE | Shandar Ahmad, M. Michael Gromiha: Design and training of a neural network for predicting the solvent accessibility of proteins. Journal of Computational Chemistry 24(11): 1313-1320 (2003) |
2002 | ||
6 | Shandar Ahmad, M. Michael Gromiha: NETASA: neural network based prediction of solvent accessibility. Bioinformatics 18(6): 819-824 (2002) | |
5 | M. Michael Gromiha, Hatsuho Uedaira, Jianghong An, Samuel Selvaraj, Ponraj Prabakaran, Akinori Sarai: ProTherm, Thermodynamic Database for Proteins and Mutants: developments in version 3.0. Nucleic Acids Research 30(1): 301-302 (2002) | |
2001 | ||
4 | Ponraj Prabakaran, Jianghong An, M. Michael Gromiha, Samuel Selvaraj, Hatsuho Uedaira, Hidetoshi Kono, Akinori Sarai: Thermodynamic database for protein-nucleic acid interactions (ProNIT). Bioinformatics 17(11): 1027-1034 (2001) | |
2000 | ||
3 | EE | Kenji Sayano, Hidetoshi Kono, M. Michael Gromiha, Akinori Sarai: Multicanonical Monte Carlo calculation of the free-energy map of the base-amino acid interaction. Journal of Computational Chemistry 21(11): 954-962 (2000) |
2 | M. Michael Gromiha, Jianghong An, Hidetoshi Kono, Motohisa Oobatake, Hatsuho Uedaira, Ponraj Prabakaran, Akinori Sarai: ProTherm, version 2.0: thermodynamic database for proteins and mutants. Nucleic Acids Research 28(1): 283-285 (2000) | |
1999 | ||
1 | M. Michael Gromiha, Jianghong An, Hidetoshi Kono, Motohisa Oobatake, Hatsuho Uedaira, Akinori Sarai: ProTherm: Thermodynamic Database for Proteins and Mutants. Nucleic Acids Research 27(1): 286-288 (1999) |