2007 |
13 | EE | Ruben Gamboa,
John R. Cowles:
Theory Extension in ACL2(r).
J. Autom. Reasoning 38(4): 273-301 (2007) |
2006 |
12 | EE | John R. Cowles,
Ruben Gamboa:
Unique factorization in ACL2: Euclidean domains.
ACL2 2006: 21-27 |
11 | EE | Ruben Gamboa,
John R. Cowles:
Implementing a cost-aware evaluator for ACL2 expressions.
ACL2 2006: 71-80 |
2004 |
10 | EE | Ruben Gamboa,
John R. Cowles:
A Mechanical Proof of the Cook-Levin Theorem.
TPHOLs 2004: 99-116 |
2003 |
9 | EE | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles:
Error Analysis of the Kmetz/Maenner Algorithm.
VLSI Signal Processing 33(1-2): 37-53 (2003) |
8 | EE | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Colin D. Walter:
Fast Fourier Transforms Using the Complex Logarithmic Number System.
VLSI Signal Processing 33(3): 325-335 (2003) |
1998 |
7 | | Rex E. Gantenbein,
Thomas L. James,
John R. Cowles,
William H. Paloski:
TELELAB: A virtual laboratory for scientific data distribution on the internet.
Computers and Their Applications 1998: 89-92 |
6 | | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Mark D. Winkel:
Arithmetic Co-Transformations in the Real and Complex Logarithmic Number Systems.
IEEE Trans. Computers 47(7): 777-786 (1998) |
1997 |
5 | EE | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Mark D. Winkel:
Arithmetic Co-transformations in the Real and Complex Logarithmic Number Systems.
IEEE Symposium on Computer Arithmetic 1997: 190-199 |
1992 |
4 | | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Mark D. Winkel:
Applying Features of IEEE 754 to Sign/Logarithm Arithmetic.
IEEE Trans. Computers 41(8): 1040-1050 (1992) |
3 | EE | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Jerry J. Cupal:
Initializing RAM-based logarithmic processors.
VLSI Signal Processing 4(2-3): 243-252 (1992) |
1990 |
2 | | Mark G. Arnold,
Thomas A. Bailey,
John R. Cowles,
Jerry J. Cupal:
Redundant Logarithmic Arithmetic.
IEEE Trans. Computers 39(8): 1077-1086 (1990) |
1986 |
1 | | John H. Rowland,
John R. Cowles:
Small Sample Algorithms for the Identification of Polynomials.
J. ACM 33(4): 822-829 (1986) |