2008 |
13 | EE | Nicholas J. Cavenagh,
Diane Donovan,
Abdollah Khodkar,
G. H. John Van Rees:
When is a partial Latin square uniquely completable, but not its completable product?
Discrete Mathematics 308(13): 2830-2843 (2008) |
12 | EE | Nicholas J. Cavenagh,
Ales Drápal,
Carlo Hämäläinen:
Latin bitrades derived from groups.
Discrete Mathematics 308(24): 6189-6202 (2008) |
11 | EE | Nicholas J. Cavenagh,
Diane Donovan,
Emine Sule Yazici:
Minimal homogeneous Steiner 2-(v, 3) trades.
Discrete Mathematics 308(5-6): 741-752 (2008) |
10 | EE | Nicholas J. Cavenagh,
Petr Lisonek:
Planar Eulerian triangulations are equivalent to spherical Latin bitrades.
J. Comb. Theory, Ser. A 115(1): 193-197 (2008) |
9 | EE | Nicholas J. Cavenagh,
Catherine S. Greenhill,
Ian M. Wanless:
The cycle structure of two rows in a random Latin square.
Random Struct. Algorithms 33(3): 286-309 (2008) |
2007 |
8 | | Nicholas J. Cavenagh,
Diane Donovan,
Abdollah Khodkar:
On The Spectrum Of Critical Sets In Back Circulant Latin Squares.
Ars Comb. 82: (2007) |
2006 |
7 | EE | Nicholas J. Cavenagh,
Diane Donovan,
Emine Sule Yazici:
Minimal homogeneous latin trades.
Discrete Mathematics 306(17): 2047-2055 (2006) |
6 | EE | Nicholas J. Cavenagh,
Diana Combe,
Adrian M. Nelson:
Edge-Magic Group Labellings of Countable Graphs.
Electr. J. Comb. 13(1): (2006) |
2005 |
5 | EE | Nicholas J. Cavenagh,
Diane Donovan,
Ales Drápal:
3-Homogeneous latin trades.
Discrete Mathematics 300(1-3): 57-70 (2005) |
2004 |
4 | EE | Nicholas J. Cavenagh,
Diane Donovan,
Ales Drápal:
Constructing and deconstructing latin trades.
Discrete Mathematics 284(1-3): 97-105 (2004) |
3 | EE | Nicholas J. Cavenagh,
Saad El-Zanati,
Abdollah Khodkar,
Charles Vanden Eynden:
On a generalization of the Oberwolfach problem.
J. Comb. Theory, Ser. A 106(2): 255-275 (2004) |
2003 |
2 | | Nicholas J. Cavenagh:
Latin Trade Algorithms and the Smallest Critical Set in a Latin Square.
Journal of Automata, Languages and Combinatorics 8(4): 567-578 (2003) |
2002 |
1 | EE | Nicholas J. Cavenagh:
Further decompositions of complete tripartite graphs into 5-cycles.
Discrete Mathematics 256(1-2): 55-81 (2002) |