| 2009 |
| 51 | | Alzennyr Da Silva,
Yves Lechevallier,
Francisco de A. T. de Carvalho:
Vers la simulation et la détection des changements des données évolutives d'usage du Web.
EGC 2009: 453-454 |
| 50 | EE | Alzennyr Da Silva,
Yves Lechevallier,
Fabrice Rossi,
Francisco de A. T. de Carvalho:
Clustering Dynamic Web Usage Data.
Innovative Applications in Data Mining 2009: 71-82 |
| 49 | EE | Alzennyr Da Silva,
Yves Lechevallier,
Francisco de A. T. de Carvalho:
Comparing Clustering on Symbolic Data.
Intelligent Text Categorization and Clustering 2009: 81-94 |
| 2008 |
| 48 | EE | Kelly P. Silva,
Rodrigo G. F. Soares,
Francisco de A. T. de Carvalho,
Teresa Bernarda Ludermir:
Evolving both size and accuracy of RBF networks using Memetic Algorithm.
IJCNN 2008: 1938-1944 |
| 47 | EE | Rodrigo G. F. Soares,
Kelly P. Silva,
Teresa Bernarda Ludermir,
Francisco de A. T. de Carvalho:
An evolutionary approach for the clustering data problem.
IJCNN 2008: 1945-1950 |
| 46 | EE | Kelly P. Silva,
Francisco de A. T. de Carvalho,
M. Csernel:
Clustering of symbolic data through a dissimilarity volume based measure.
IJCNN 2008: 2865-2871 |
| 45 | EE | André Luis Santiago Maia,
Francisco de A. T. de Carvalho:
Fitting a Least Absolute Deviation Regression Model on Interval-Valued Data.
SBIA 2008: 207-216 |
| 44 | EE | Valmir Macário Filho,
Ricardo Bastos Cavalcante Prudêncio,
Francisco de A. T. de Carvalho,
Leandro R. Torres,
Laerte Rodrigues Jr.,
Marcos G. Lima:
Automatic Information Extraction in Semi-structured Official Journals.
SBRN 2008: 51-56 |
| 43 | EE | Eufrasio de A. Lima Neto,
Francisco de A. T. de Carvalho:
Centre and Range method for fitting a linear regression model to symbolic interval data.
Computational Statistics & Data Analysis 52(3): 1500-1515 (2008) |
| 2007 |
| 42 | | Alzennyr Da Silva,
Yves Lechevallier,
Fabrice Rossi,
Francisco de A. T. de Carvalho:
Construction et analyse de résumés de données évolutives : application aux données d'usage du Web.
EGC 2007: 539-544 |
| 41 | EE | Renata M. C. R. de Souza,
Francisco de A. T. de Carvalho:
A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances.
HIS 2007: 168-173 |
| 40 | EE | Camilo P. Tenorio,
Francisco de A. T. de Carvalho,
Julio T. Pimentel:
A Partitioning Fuzzy Clustering Algorithm for Symbolic Interval Data based on Adaptive Mahalanobis Distances.
HIS 2007: 174-179 |
| 39 | EE | Eleonora Ma. Jesus Oliveira,
Paulemir G. Campos,
Teresa Bernarda Ludermir,
Francisco de A. T. de Carvalho,
Wilson Rosa de Oliveira:
Application of a Hybrid Classifier to the Recognition of Petrochemical Odors.
HIS 2007: 78-83 |
| 38 | EE | Francisco de A. T. de Carvalho,
Julio T. Pimentel,
Lucas X. T. Bezerra:
Clustering of symbolic interval data based on a single adaptive L1 distance.
IJCNN 2007: 224-229 |
| 37 | EE | Eufrasio de A. Lima Neto,
Francisco de A. T. de Carvalho,
Jose F. Coelho Neto:
Inequality Constraints in Regression Models to Symbolic Interval Variables.
IJCNN 2007: 801-806 |
| 36 | EE | Francisco de A. T. de Carvalho,
Julio T. Pimentel,
Lucas X. T. Bezerra,
Renata M. C. R. de Souza:
Clustering symbolic interval data based on a single adaptive hausdorff distance.
SMC 2007: 451-455 |
| 35 | EE | Eufrasio de A. Lima Neto,
Francisco de A. T. de Carvalho,
Jose F. Coelho Neto:
Constrained linear regression models for interval-valued data with dependence.
SMC 2007: 456-461 |
| 34 | EE | Francisco de A. T. de Carvalho:
Fuzzy c-means clustering methods for symbolic interval data.
Pattern Recognition Letters 28(4): 423-437 (2007) |
| 2006 |
| 33 | | Fabrice Rossi,
Francisco de A. T. de Carvalho,
Yves Lechevallier,
Alzennyr Da Silva:
Comparaison de dissimilarité pour l'analyse de l'usage d'un site web.
EGC 2006: 409-414 |
| 32 | EE | Fabio C. D. Silva,
Francisco de A. T. de Carvalho,
Renata M. C. R. de Souza,
Joyce Q. Silva:
A Modal Symbolic Classifier for Interval Data.
ICONIP (2) 2006: 50-59 |
| 31 | EE | André Luis Santiago Maia,
Francisco de A. T. de Carvalho,
Teresa Bernarda Ludermir:
A Hybrid Model for Symbolic Interval Time Series Forecasting.
ICONIP (2) 2006: 934-941 |
| 30 | EE | Francisco de A. T. de Carvalho:
A Fuzzy Clustering Algorithm for Symbolic Interval Data Based on a Single Adaptive Euclidean Distance.
ICONIP (3) 2006: 1012-1021 |
| 29 | EE | Gecynalda Soares S. Gomes,
André Luis Santiago Maia,
Teresa Bernarda Ludermir,
Francisco de A. T. de Carvalho,
Aluizio F. R. Araújo:
Hybrid model with dynamic architecture for forecasting time series.
IJCNN 2006: 3742-3747 |
| 28 | EE | Alzennyr Da Silva,
Yves Lechevallier,
Francisco de A. T. de Carvalho,
Brigitte Trousse:
Mining Web Usage Data for Discovering Navigation Clusters.
ISCC 2006: 910-915 |
| 27 | EE | Renata M. C. R. de Souza,
Francisco de A. T. de Carvalho,
Daniel F. Pizzato:
A Partitioning Method for Mixed Feature-Type Symbolic Data Using a Squared Euclidean Distance.
KI 2006: 260-273 |
| 26 | EE | Byron L. D. Bezerra,
Francisco de A. T. de Carvalho,
Valmir Macário Filho:
C^2: : A Collaborative Recommendation System Based on Modal Symbolic User Profile.
Web Intelligence 2006: 673-679 |
| 25 | EE | Francisco de A. T. de Carvalho,
Camilo P. Tenorio,
Nicomedes L. Cavalcanti Junior:
Partitional fuzzy clustering methods based on adaptive quadratic distances.
Fuzzy Sets and Systems 157(21): 2833-2857 (2006) |
| 24 | EE | Francisco de A. T. de Carvalho,
Renata M. C. R. de Souza,
Marie Chavent,
Yves Lechevallier:
Adaptive Hausdorff distances and dynamic clustering of symbolic interval data.
Pattern Recognition Letters 27(3): 167-179 (2006) |
| 2005 |
| 23 | EE | Nicomedes Cavalcanti,
Francisco de A. T. de Carvalho:
An Adaptive Fuzzy c-Means Algorithm with the L2 Norm.
Australian Conference on Artificial Intelligence 2005: 1138-1141 |
| 22 | EE | Eufrasio de A. Lima Neto,
Francisco de A. T. de Carvalho,
Eduarda S. Freire:
Applying Constrained Linear Regression Models to Predict Interval-Valued Data.
KI 2005: 92-106 |
| 21 | EE | Luciano Barbosa,
Ana Carolina Salgado,
Francisco de A. T. de Carvalho,
Jacques Robin,
Juliana Freire:
Looking at both the present and the past to efficiently update replicas of web content.
WIDM 2005: 75-80 |
| 2004 |
| 20 | EE | Byron L. D. Bezerra,
Francisco de A. T. de Carvalho:
A Symbolic Hybrid Approach to Face the New User Problem in Recommender Systems.
Australian Conference on Artificial Intelligence 2004: 1011-1016 |
| 19 | EE | Eufrasio de A. Lima Neto,
Francisco de A. T. de Carvalho,
Camilo P. Tenorio:
Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features.
Australian Conference on Artificial Intelligence 2004: 526-537 |
| 18 | EE | Byron L. D. Bezerra,
Francisco de A. T. de Carvalho,
Gustavo Alves:
Collaborative Filtering Based on Modal Symbolic User Profiles: Knowing You in the First Meeting.
IBERAMIA 2004: 235-245 |
| 17 | EE | Renata M. C. R. de Souza,
Francisco de A. T. de Carvalho,
Camilo P. Tenorio:
Two Partitional Methods for Interval-Valued Data Using Mahalanobis Distances.
IBERAMIA 2004: 454-463 |
| 16 | EE | Simith T. D'Oliveira Junior,
Francisco de A. T. de Carvalho,
Renata M. C. R. de Souza:
A Classifier for Quantitative Feature Values Based on a Region Oriented Symbolic Approach.
IBERAMIA 2004: 464-473 |
| 15 | EE | Alzennyr Da Silva,
Francisco de A. T. de Carvalho,
Teresa Bernarda Ludermir,
Nicomedes Cavalcanti:
Comparing Metrics in Fuzzy Clustering for Symbolic Data on SODAS Format.
IBERAMIA 2004: 727-736 |
| 14 | EE | Simith T. D'Oliveira Junior,
Francisco de A. T. de Carvalho,
Renata M. C. R. de Souza:
Classification of SAR Images Through a Convex Hull Region Oriented Approach.
ICONIP 2004: 769-774 |
| 13 | EE | Renata M. C. R. de Souza,
Francisco de A. T. de Carvalho,
Fabio C. D. Silva:
Clustering of Interval-Valued Data Using Adaptive Squared Euclidean Distances.
ICONIP 2004: 775-780 |
| 12 | EE | Francisco de A. T. de Carvalho,
Eufrasio de A. Lima Neto,
Camilo P. Tenorio:
A New Method to Fit a Linear Regression Model for Interval-Valued Data.
KI 2004: 295-306 |
| 11 | EE | Francisco de A. T. de Carvalho,
Renata M. C. R. de Souza,
Fabio C. D. Silva:
A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances.
SBIA 2004: 266-275 |
| 10 | EE | Sérgio R. de M. Queiroz,
Francisco de A. T. de Carvalho:
Making Collaborative Group Recommendations Based on Modal Symbolic Data.
SBIA 2004: 307-316 |
| 9 | EE | Byron L. D. Bezerra,
Francisco de A. T. de Carvalho:
A symbolic approach for content-based information filtering.
Inf. Process. Lett. 92(1): 45-52 (2004) |
| 8 | EE | Renata M. C. R. de Souza,
Francisco de A. T. de Carvalho:
Clustering of interval data based on city-block distances.
Pattern Recognition Letters 25(3): 353-365 (2004) |
| 7 | EE | Ricardo Bastos Cavalcante Prudêncio,
Teresa Bernarda Ludermir,
Francisco de A. T. de Carvalho:
A Modal Symbolic Classifier for selecting time series models.
Pattern Recognition Letters 25(8): 911-921 (2004) |
| 2002 |
| 6 | EE | Byron L. D. Bezerra,
Francisco de A. T. de Carvalho,
Geber Ramalho,
Jean-Daniel Zucker:
Speeding up Recommender Systems with Meta-prototypes.
SBIA 2002: 227-236 |
| 5 | EE | Ivan R. Teixeira,
Francisco de A. T. de Carvalho,
Geber Ramalho,
Vincent Corruble:
ActiveCP: A Method for Speeding up User Preferences Acquisition in Collaborative Filtering Systems.
SBIA 2002: 237-247 |
| 4 | EE | Sérgio R. de M. Queiroz,
Francisco de A. T. de Carvalho,
Geber Ramalho,
Vincent Corruble:
Making Recommendations for Groups Using Collaborative Filtering and Fuzzy Majority.
SBIA 2002: 248-258 |
| 3 | EE | Ivan G. Costa,
Francisco de A. T. de Carvalho,
Marcílio Carlos Pereira de Souto:
A Symbolic Approach to Gene Expression Time Series Analysis.
SBRN 2002: 25-30 |
| 2 | | Ivan G. Costa,
Francisco de A. T. de Carvalho,
Marcílio Carlos Pereira de Souto:
Stability Evaluation of Clustering Algorithms for Time Series Gene Expression Data.
WOB 2002: 88-90 |
| 1 | EE | Ivan G. Costa,
Francisco de A. T. de Carvalho,
Marcílio Carlos Pereira de Souto:
Comparative study on proximity indices for cluster analysis of gene expression time series.
Journal of Intelligent and Fuzzy Systems 13(2-4): 133-142 (2002) |