2009 |
31 | EE | Dan Cosley,
Jonathan Baxter,
Soyoung Lee,
Brian Alson,
Saeko Nomura,
Phil Adams,
Chethan Sarabu,
Geri Gay:
A tag in the hand: supporting semantic, social, and spatial navigation in museums.
CHI 2009: 1953-1962 |
2008 |
30 | EE | Dan Cosley,
Joel Lewenstein,
Andrew Herman,
Jenna Holloway,
Jonathan Baxter,
Saeko Nomura,
Kirsten Boehner,
Geri Gay:
ArtLinks: fostering social awareness and reflection in museums.
CHI 2008: 403-412 |
2004 |
29 | EE | Evan Greensmith,
Peter L. Bartlett,
Jonathan Baxter:
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning.
Journal of Machine Learning Research 5: 1471-1530 (2004) |
2002 |
28 | | Douglas Aberdeen,
Jonathan Baxter:
Scalable Internal-State Policy-Gradient Methods for POMDPs.
ICML 2002: 3-10 |
27 | EE | Peter L. Bartlett,
Jonathan Baxter:
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning.
J. Comput. Syst. Sci. 64(1): 133-150 (2002) |
2001 |
26 | | Nigel Tao,
Jonathan Baxter,
Lex Weaver:
A Multi-Agent Policy-Gradient Approach to Network Routing.
ICML 2001: 553-560 |
25 | EE | Evan Greensmith,
Peter L. Bartlett,
Jonathan Baxter:
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning.
NIPS 2001: 1507-1514 |
24 | | Douglas Aberdeen,
Jonathan Baxter:
Emmerald: a fast matrix-matrix multiply using Intel's SSE instructions.
Concurrency and Computation: Practice and Experience 13(2): 103-119 (2001) |
23 | EE | Jonathan Baxter,
Peter L. Bartlett:
Infinite-Horizon Policy-Gradient Estimation.
J. Artif. Intell. Res. (JAIR) 15: 319-350 (2001) |
22 | EE | Jonathan Baxter,
Peter L. Bartlett,
Lex Weaver:
Experiments with Infinite-Horizon, Policy-Gradient Estimation.
J. Artif. Intell. Res. (JAIR) 15: 351-381 (2001) |
2000 |
21 | | Peter L. Bartlett,
Jonathan Baxter:
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning.
COLT 2000: 133-141 |
20 | EE | Douglas Aberdeen,
Jonathan Baxter:
General Matrix-Matrix Multiplication Using SIMD Features of the PIII (Research Note).
Euro-Par 2000: 980-983 |
19 | | Jonathan Baxter,
Peter L. Bartlett:
Reinforcement Learning in POMDP's via Direct Gradient Ascent.
ICML 2000: 41-48 |
18 | EE | Douglas Aberdeen,
Jonathan Baxter,
Robert Edwards:
98¢/Mflops/s, Ultra-Large-Scale Neural-Network Training on a PIII Cluster.
SC 2000 |
17 | EE | Jonathan Baxter:
A Model of Inductive Bias Learning.
J. Artif. Intell. Res. (JAIR) 12: 149-198 (2000) |
16 | | Llew Mason,
Peter L. Bartlett,
Jonathan Baxter:
Improved Generalization Through Explicit Optimization of Margins.
Machine Learning 38(3): 243-255 (2000) |
15 | | Jonathan Baxter,
Andrew Tridgell,
Lex Weaver:
Learning to Play Chess Using Temporal Differences.
Machine Learning 40(3): 243-263 (2000) |
1999 |
14 | EE | Llew Mason,
Jonathan Baxter,
Peter L. Bartlett,
Marcus R. Frean:
Boosting Algorithms as Gradient Descent.
NIPS 1999: 512-518 |
13 | EE | Jonathan Baxter,
Andrew Tridgell,
Lex Weaver:
TDLeaf(lambda): Combining Temporal Difference Learning with Game-Tree Search
CoRR cs.LG/9901001: (1999) |
12 | EE | Jonathan Baxter,
Andrew Tridgell,
Lex Weaver:
KnightCap: A chess program that learns by combining TD(lambda) with game-tree search
CoRR cs.LG/9901002: (1999) |
11 | | Jonathan Baxter,
Nicolò Cesa-Bianchi:
Guest Editors' Introduction.
Machine Learning 37(3): 239-240 (1999) |
1998 |
10 | | Jonathan Baxter,
Andrew Tridgell,
Lex Weaver:
KnightCap: A Chess Programm That Learns by Combining TD(lambda) with Game-Tree Search.
ICML 1998: 28-36 |
9 | EE | Llew Mason,
Peter L. Bartlett,
Jonathan Baxter:
Direct Optimization of Margins Improves Generalization in Combined Classifiers.
NIPS 1998: 288-294 |
1997 |
8 | | Jonathan Baxter,
Peter L. Bartlett:
A Result Relating Convex n-Widths to Covering Numbers with some Applications to Neural Networks.
EuroCOLT 1997: 251-259 |
7 | | Jonathan Baxter:
The Canonical Distortion Measure for Vector Quantization and Function Approximation.
ICML 1997: 39-47 |
6 | | Jonathan Baxter,
Peter L. Bartlett:
The Canonical Distortion Measure in Feature Space and 1-NN Classification.
NIPS 1997 |
5 | | Jonathan Baxter:
A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling.
Machine Learning 28(1): 7-39 (1997) |
1996 |
4 | EE | Jonathan Baxter:
A Bayesian/Information Theoretic Model of Bias Learning.
COLT 1996: 77-88 |
3 | | Jonathan Baxter,
John Shawe-Taylor:
Learning to Compress Ergodic Sources.
Data Compression Conference 1996: 423 |
1995 |
2 | EE | Jonathan Baxter:
Learning Internal Representations.
COLT 1995: 311-320 |
1 | EE | Jonathan Baxter:
Learning Model Bias.
NIPS 1995: 169-175 |