2008 |
58 | EE | Alex Po Leung,
Peter Auer:
An Efficient Search Algorithm for Content-Based Image Retrieval with User Feedback.
ICDM Workshops 2008: 884-890 |
57 | EE | Peter Auer,
Thomas Jaksch,
Ronald Ortner:
Near-optimal Regret Bounds for Reinforcement Learning.
NIPS 2008: 89-96 |
56 | EE | Peter Auer:
Learning with Malicious Noise.
Encyclopedia of Algorithms 2008 |
55 | EE | Peter Auer,
Philip M. Long:
Guest editors' introduction: Special issue on learning theory.
J. Comput. Syst. Sci. 74(8): 1227 (2008) |
54 | EE | Peter Auer,
Harald Burgsteiner,
Wolfgang Maass:
A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
Neural Networks 21(5): 786-795 (2008) |
2007 |
53 | EE | Peter Auer,
Ronald Ortner,
Csaba Szepesvári:
Improved Rates for the Stochastic Continuum-Armed Bandit Problem.
COLT 2007: 454-468 |
52 | EE | Peter Auer,
Ronald Ortner:
A new PAC bound for intersection-closed concept classes.
Machine Learning 66(2-3): 151-163 (2007) |
2006 |
51 | EE | Chamy Allenberg,
Peter Auer,
László Györfi,
György Ottucsák:
Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring.
ALT 2006: 229-243 |
50 | EE | Martin Antenreiter,
Christian Savu-Krohn,
Peter Auer:
Visual Classification of Images by Learning Geometric Appearances Through Boosting.
ANNPR 2006: 233-243 |
49 | EE | Peter Auer,
Ronald Ortner:
Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning.
NIPS 2006: 49-56 |
48 | EE | Andreas Opelt,
Axel Pinz,
Michael Fussenegger,
Peter Auer:
Generic Object Recognition with Boosting.
IEEE Trans. Pattern Anal. Mach. Intell. 28(3): 416-431 (2006) |
2005 |
47 | | Peter Auer,
Ron Meir:
Learning Theory, 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005, Proceedings
Springer 2005 |
46 | EE | Christian Savu-Krohn,
Peter Auer:
A Simple Feature Extraction for High Dimensional Image Representations.
SLSFS 2005: 163-172 |
2004 |
45 | EE | Peter Auer,
Ronald Ortner:
A New PAC Bound for Intersection-Closed Concept Classes.
COLT 2004: 408-414 |
44 | EE | Andreas Opelt,
Michael Fussenegger,
Axel Pinz,
Peter Auer:
Weak Hypotheses and Boosting for Generic Object Detection and Recognition.
ECCV (2) 2004: 71-84 |
43 | EE | Peter Auer,
Ronald Ortner:
A Boosting Approach to Multiple Instance Learning.
ECML 2004: 63-74 |
42 | EE | Michael Fussenegger,
Andreas Opelt,
Axel Pinz,
Peter Auer:
Object Recognition Using Segmentation for Feature Detection.
ICPR (3) 2004: 41-44 |
2002 |
41 | EE | Peter Auer,
Harald Burgsteiner,
Wolfgang Maass:
Reducing Communication for Distributed Learning in Neural Networks.
ICANN 2002: 123-128 |
40 | EE | Keith Andrews,
Wolfgang Kienreich,
Vedran Sabol,
Jutta Becker,
Georg Droschl,
Frank Kappe,
Michael Granitzer,
Peter Auer,
Klaus Tochtermann:
The InfoSky visual explorer: exploiting hierarchical structure and document similarities.
Information Visualization 1(3-4): 166-181 (2002) |
39 | EE | Peter Auer,
Nicolò Cesa-Bianchi,
Claudio Gentile:
Adaptive and Self-Confident On-Line Learning Algorithms.
J. Comput. Syst. Sci. 64(1): 48-75 (2002) |
38 | EE | Peter Auer:
Using Confidence Bounds for Exploitation-Exploration Trade-offs.
Journal of Machine Learning Research 3: 397-422 (2002) |
37 | | Peter Auer,
Nicolò Cesa-Bianchi,
Paul Fischer:
Finite-time Analysis of the Multiarmed Bandit Problem.
Machine Learning 47(2-3): 235-256 (2002) |
36 | EE | Peter Auer,
Nicolò Cesa-Bianchi,
Yoav Freund,
Robert E. Schapire:
The Nonstochastic Multiarmed Bandit Problem.
SIAM J. Comput. 32(1): 48-77 (2002) |
2000 |
35 | | Peter Auer,
Claudio Gentile:
Adaptive and Self-Confident On-Line Learning Algorithms.
COLT 2000: 107-117 |
34 | | Peter Auer:
An Improved On-line Algorithm for Learning Linear Evaluation Functions.
COLT 2000: 118-125 |
33 | | Peter Auer:
Using Upper Confidence Bounds for Online Learning.
FOCS 2000: 270-279 |
32 | EE | Peter Auer,
Philip M. Long,
Wolfgang Maass,
Gerhard J. Woeginger:
On the Complexity of Function Learning
Electronic Colloquium on Computational Complexity (ECCC) 7(50): (2000) |
31 | EE | Peter Auer,
Stephen Kwek,
Wolfgang Maass,
Manfred K. Warmuth:
Learning of Depth Two Neural Networks with Constant Fan-in at the Hidden Nodes
Electronic Colloquium on Computational Complexity (ECCC) 7(55): (2000) |
30 | EE | Peter Auer:
On-line Learning of Rectangles in Noisy Environments
Electronic Colloquium on Computational Complexity (ECCC) 7(63): (2000) |
29 | EE | Peter Auer:
On Learning from Ambiguous Information
Electronic Colloquium on Computational Complexity (ECCC) 7(66): (2000) |
28 | EE | Peter Auer,
Philip M. Long:
Simulating Access to Hidden Information while Learning
Electronic Colloquium on Computational Complexity (ECCC) 7(67): (2000) |
27 | EE | Peter Auer,
Nicolò Cesa-Bianchi,
Yoav Freund,
Robert E. Schapire:
Gambling in a rigged casino: The adversarial multi-armed bandit problem
Electronic Colloquium on Computational Complexity (ECCC) 7(68): (2000) |
26 | EE | Peter Auer:
Learning Nested Differences in the Presence of Malicious Noise
Electronic Colloquium on Computational Complexity (ECCC) 7(69): (2000) |
25 | EE | Peter Auer,
Manfred K. Warmuth:
Tracking the best disjunction
Electronic Colloquium on Computational Complexity (ECCC) 7(70): (2000) |
24 | EE | Peter Auer,
Nicolò Cesa-Bianchi:
On-line Learning with Malicious Noise and the Closure Algorithm
Electronic Colloquium on Computational Complexity (ECCC) 7(71): (2000) |
23 | EE | Peter Auer,
Philip M. Long,
Aravind Srinivasan:
Approximating Hyper-Rectangles: Learning and Pseudo-random Sets
Electronic Colloquium on Computational Complexity (ECCC) 7(72): (2000) |
1999 |
22 | | Peter Auer,
Philip M. Long:
Structural Results About On-line Learning Models With and Without Queries.
Machine Learning 36(3): 147-181 (1999) |
1998 |
21 | | Peter Auer,
Nicolò Cesa-Bianchi:
On-Line Learning with Malicious Noise and the Closure Algorithm.
Ann. Math. Artif. Intell. 23(1-2): 83-99 (1998) |
20 | | Peter Auer,
Philip M. Long,
Aravind Srinivasan:
Approximating Hyper-Rectangles: Learning and Pseudorandom Sets.
J. Comput. Syst. Sci. 57(3): 376-388 (1998) |
19 | | Peter Auer,
Manfred K. Warmuth:
Tracking the Best Disjunction.
Machine Learning 32(2): 127-150 (1998) |
1997 |
18 | | Peter Auer:
On Learning From Multi-Instance Examples: Empirical Evaluation of a Theoretical Approach.
ICML 1997: 21-29 |
17 | EE | Peter Auer,
Philip M. Long,
Aravind Srinivasan:
Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets.
STOC 1997: 314-323 |
16 | EE | Jyrki Kivinen,
Manfred K. Warmuth,
Peter Auer:
The Perceptron Algorithm Versus Winnow: Linear Versus Logarithmic Mistake Bounds when Few Input Variables are Relevant (Technical Note).
Artif. Intell. 97(1-2): 325-343 (1997) |
15 | EE | Peter Auer:
Learning Nested Differences in the Presence of Malicious Noise.
Theor. Comput. Sci. 185(1): 159-175 (1997) |
1996 |
14 | EE | Peter Auer,
Stephen Kwek,
Wolfgang Maass,
Manfred K. Warmuth:
Learning of Depth Two Neural Networks with Constant Fan-In at the Hidden Nodes (Extended Abstract).
COLT 1996: 333-343 |
13 | | Peter Auer,
Pasquale Caianiello,
Nicolò Cesa-Bianchi:
Tight Bounds on the Cumulative Profit of Distributed Voters (Abstract).
PODC 1996: 312 |
1995 |
12 | | Peter Auer:
Learning Nested Differences in the Presence of Malicious Noise.
ALT 1995: 123-137 |
11 | | Peter Auer,
Manfred K. Warmuth:
Tracking the Best Disjunction.
FOCS 1995: 312-321 |
10 | | Peter Auer,
Nicolò Cesa-Bianchi,
Yoav Freund,
Robert E. Schapire:
Gambling in a Rigged Casino: The Adversarial Multi-Arm Bandit Problem.
FOCS 1995: 322-331 |
9 | | Peter Auer,
Robert C. Holte,
Wolfgang Maass:
Theory and Applications of Agnostic PAC-Learning with Small Decision Trees.
ICML 1995: 21-29 |
8 | EE | Peter Auer,
Mark Herbster,
Manfred K. Warmuth:
Exponentially many local minima for single neurons.
NIPS 1995: 316-322 |
7 | | Peter Auer,
Philip M. Long,
Wolfgang Maass,
Gerhard J. Woeginger:
On the Complexity of Function Learning.
Machine Learning 18(2-3): 187-230 (1995) |
1994 |
6 | | Peter Auer,
Nicolò Cesa-Bianchi:
On-line Learning with Malicious Noise and the Closure Algorithm.
AII/ALT 1994: 229-247 |
5 | EE | Peter Auer,
Philip M. Long:
Simulating access to hidden information while learning.
STOC 1994: 263-272 |
1993 |
4 | EE | Peter Auer:
On-Line Learning of Rectangles in Noisy Environments.
COLT 1993: 253-261 |
3 | EE | Peter Auer,
Philip M. Long,
Wolfgang Maass,
Gerhard J. Woeginger:
On the Complexity of Function Learning.
COLT 1993: 392-401 |
1991 |
2 | | Peter Auer:
Solving String Equations with Constant Restrictions.
IWWERT 1991: 103-132 |
1 | | Peter Auer:
Unification in the Combination of Disjoint Theories.
IWWERT 1991: 177-186 |