2008 | ||
---|---|---|
58 | EE | Alex Po Leung, Peter Auer: An Efficient Search Algorithm for Content-Based Image Retrieval with User Feedback. ICDM Workshops 2008: 884-890 |
57 | EE | Peter Auer, Thomas Jaksch, Ronald Ortner: Near-optimal Regret Bounds for Reinforcement Learning. NIPS 2008: 89-96 |
56 | EE | Peter Auer: Learning with Malicious Noise. Encyclopedia of Algorithms 2008 |
55 | EE | Peter Auer, Philip M. Long: Guest editors' introduction: Special issue on learning theory. J. Comput. Syst. Sci. 74(8): 1227 (2008) |
54 | EE | Peter Auer, Harald Burgsteiner, Wolfgang Maass: A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks 21(5): 786-795 (2008) |
2007 | ||
53 | EE | Peter Auer, Ronald Ortner, Csaba Szepesvári: Improved Rates for the Stochastic Continuum-Armed Bandit Problem. COLT 2007: 454-468 |
52 | EE | Peter Auer, Ronald Ortner: A new PAC bound for intersection-closed concept classes. Machine Learning 66(2-3): 151-163 (2007) |
2006 | ||
51 | EE | Chamy Allenberg, Peter Auer, László Györfi, György Ottucsák: Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring. ALT 2006: 229-243 |
50 | EE | Martin Antenreiter, Christian Savu-Krohn, Peter Auer: Visual Classification of Images by Learning Geometric Appearances Through Boosting. ANNPR 2006: 233-243 |
49 | EE | Peter Auer, Ronald Ortner: Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning. NIPS 2006: 49-56 |
48 | EE | Andreas Opelt, Axel Pinz, Michael Fussenegger, Peter Auer: Generic Object Recognition with Boosting. IEEE Trans. Pattern Anal. Mach. Intell. 28(3): 416-431 (2006) |
2005 | ||
47 | Peter Auer, Ron Meir: Learning Theory, 18th Annual Conference on Learning Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005, Proceedings Springer 2005 | |
46 | EE | Christian Savu-Krohn, Peter Auer: A Simple Feature Extraction for High Dimensional Image Representations. SLSFS 2005: 163-172 |
2004 | ||
45 | EE | Peter Auer, Ronald Ortner: A New PAC Bound for Intersection-Closed Concept Classes. COLT 2004: 408-414 |
44 | EE | Andreas Opelt, Michael Fussenegger, Axel Pinz, Peter Auer: Weak Hypotheses and Boosting for Generic Object Detection and Recognition. ECCV (2) 2004: 71-84 |
43 | EE | Peter Auer, Ronald Ortner: A Boosting Approach to Multiple Instance Learning. ECML 2004: 63-74 |
42 | EE | Michael Fussenegger, Andreas Opelt, Axel Pinz, Peter Auer: Object Recognition Using Segmentation for Feature Detection. ICPR (3) 2004: 41-44 |
2002 | ||
41 | EE | Peter Auer, Harald Burgsteiner, Wolfgang Maass: Reducing Communication for Distributed Learning in Neural Networks. ICANN 2002: 123-128 |
40 | EE | Keith Andrews, Wolfgang Kienreich, Vedran Sabol, Jutta Becker, Georg Droschl, Frank Kappe, Michael Granitzer, Peter Auer, Klaus Tochtermann: The InfoSky visual explorer: exploiting hierarchical structure and document similarities. Information Visualization 1(3-4): 166-181 (2002) |
39 | EE | Peter Auer, Nicolò Cesa-Bianchi, Claudio Gentile: Adaptive and Self-Confident On-Line Learning Algorithms. J. Comput. Syst. Sci. 64(1): 48-75 (2002) |
38 | EE | Peter Auer: Using Confidence Bounds for Exploitation-Exploration Trade-offs. Journal of Machine Learning Research 3: 397-422 (2002) |
37 | Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer: Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning 47(2-3): 235-256 (2002) | |
36 | EE | Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire: The Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput. 32(1): 48-77 (2002) |
2000 | ||
35 | Peter Auer, Claudio Gentile: Adaptive and Self-Confident On-Line Learning Algorithms. COLT 2000: 107-117 | |
34 | Peter Auer: An Improved On-line Algorithm for Learning Linear Evaluation Functions. COLT 2000: 118-125 | |
33 | Peter Auer: Using Upper Confidence Bounds for Online Learning. FOCS 2000: 270-279 | |
32 | EE | Peter Auer, Philip M. Long, Wolfgang Maass, Gerhard J. Woeginger: On the Complexity of Function Learning Electronic Colloquium on Computational Complexity (ECCC) 7(50): (2000) |
31 | EE | Peter Auer, Stephen Kwek, Wolfgang Maass, Manfred K. Warmuth: Learning of Depth Two Neural Networks with Constant Fan-in at the Hidden Nodes Electronic Colloquium on Computational Complexity (ECCC) 7(55): (2000) |
30 | EE | Peter Auer: On-line Learning of Rectangles in Noisy Environments Electronic Colloquium on Computational Complexity (ECCC) 7(63): (2000) |
29 | EE | Peter Auer: On Learning from Ambiguous Information Electronic Colloquium on Computational Complexity (ECCC) 7(66): (2000) |
28 | EE | Peter Auer, Philip M. Long: Simulating Access to Hidden Information while Learning Electronic Colloquium on Computational Complexity (ECCC) 7(67): (2000) |
27 | EE | Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire: Gambling in a rigged casino: The adversarial multi-armed bandit problem Electronic Colloquium on Computational Complexity (ECCC) 7(68): (2000) |
26 | EE | Peter Auer: Learning Nested Differences in the Presence of Malicious Noise Electronic Colloquium on Computational Complexity (ECCC) 7(69): (2000) |
25 | EE | Peter Auer, Manfred K. Warmuth: Tracking the best disjunction Electronic Colloquium on Computational Complexity (ECCC) 7(70): (2000) |
24 | EE | Peter Auer, Nicolò Cesa-Bianchi: On-line Learning with Malicious Noise and the Closure Algorithm Electronic Colloquium on Computational Complexity (ECCC) 7(71): (2000) |
23 | EE | Peter Auer, Philip M. Long, Aravind Srinivasan: Approximating Hyper-Rectangles: Learning and Pseudo-random Sets Electronic Colloquium on Computational Complexity (ECCC) 7(72): (2000) |
1999 | ||
22 | Peter Auer, Philip M. Long: Structural Results About On-line Learning Models With and Without Queries. Machine Learning 36(3): 147-181 (1999) | |
1998 | ||
21 | Peter Auer, Nicolò Cesa-Bianchi: On-Line Learning with Malicious Noise and the Closure Algorithm. Ann. Math. Artif. Intell. 23(1-2): 83-99 (1998) | |
20 | Peter Auer, Philip M. Long, Aravind Srinivasan: Approximating Hyper-Rectangles: Learning and Pseudorandom Sets. J. Comput. Syst. Sci. 57(3): 376-388 (1998) | |
19 | Peter Auer, Manfred K. Warmuth: Tracking the Best Disjunction. Machine Learning 32(2): 127-150 (1998) | |
1997 | ||
18 | Peter Auer: On Learning From Multi-Instance Examples: Empirical Evaluation of a Theoretical Approach. ICML 1997: 21-29 | |
17 | EE | Peter Auer, Philip M. Long, Aravind Srinivasan: Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets. STOC 1997: 314-323 |
16 | EE | Jyrki Kivinen, Manfred K. Warmuth, Peter Auer: The Perceptron Algorithm Versus Winnow: Linear Versus Logarithmic Mistake Bounds when Few Input Variables are Relevant (Technical Note). Artif. Intell. 97(1-2): 325-343 (1997) |
15 | EE | Peter Auer: Learning Nested Differences in the Presence of Malicious Noise. Theor. Comput. Sci. 185(1): 159-175 (1997) |
1996 | ||
14 | EE | Peter Auer, Stephen Kwek, Wolfgang Maass, Manfred K. Warmuth: Learning of Depth Two Neural Networks with Constant Fan-In at the Hidden Nodes (Extended Abstract). COLT 1996: 333-343 |
13 | Peter Auer, Pasquale Caianiello, Nicolò Cesa-Bianchi: Tight Bounds on the Cumulative Profit of Distributed Voters (Abstract). PODC 1996: 312 | |
1995 | ||
12 | Peter Auer: Learning Nested Differences in the Presence of Malicious Noise. ALT 1995: 123-137 | |
11 | Peter Auer, Manfred K. Warmuth: Tracking the Best Disjunction. FOCS 1995: 312-321 | |
10 | Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire: Gambling in a Rigged Casino: The Adversarial Multi-Arm Bandit Problem. FOCS 1995: 322-331 | |
9 | Peter Auer, Robert C. Holte, Wolfgang Maass: Theory and Applications of Agnostic PAC-Learning with Small Decision Trees. ICML 1995: 21-29 | |
8 | EE | Peter Auer, Mark Herbster, Manfred K. Warmuth: Exponentially many local minima for single neurons. NIPS 1995: 316-322 |
7 | Peter Auer, Philip M. Long, Wolfgang Maass, Gerhard J. Woeginger: On the Complexity of Function Learning. Machine Learning 18(2-3): 187-230 (1995) | |
1994 | ||
6 | Peter Auer, Nicolò Cesa-Bianchi: On-line Learning with Malicious Noise and the Closure Algorithm. AII/ALT 1994: 229-247 | |
5 | EE | Peter Auer, Philip M. Long: Simulating access to hidden information while learning. STOC 1994: 263-272 |
1993 | ||
4 | EE | Peter Auer: On-Line Learning of Rectangles in Noisy Environments. COLT 1993: 253-261 |
3 | EE | Peter Auer, Philip M. Long, Wolfgang Maass, Gerhard J. Woeginger: On the Complexity of Function Learning. COLT 1993: 392-401 |
1991 | ||
2 | Peter Auer: Solving String Equations with Constant Restrictions. IWWERT 1991: 103-132 | |
1 | Peter Auer: Unification in the Combination of Disjoint Theories. IWWERT 1991: 177-186 |