2008 |
9 | EE | Jarno Vanhatalo,
Aki Vehtari:
Modelling local and global phenomena with sparse Gaussian processes.
UAI 2008: 571-578 |
2007 |
8 | EE | Marko Sysi-Aho,
Aki Vehtari,
Vidya R. Velagapudi,
Jukka Westerbacka,
Laxman Yetukuri,
Robert Bergholm,
Marja-Riitta Taskinen,
Hannele Yki-Järvinen,
Matej Oresic:
Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles.
ISMB/ECCB (Supplement of Bioinformatics) 2007: 519-528 |
7 | EE | Simo Särkkä,
Aki Vehtari,
Jouko Lampinen:
Rao-Blackwellized particle filter for multiple target tracking.
Information Fusion 8(1): 2-15 (2007) |
6 | EE | Simo Särkkä,
Aki Vehtari,
Jouko Lampinen:
CATS benchmark time series prediction by Kalman smoother with cross-validated noise density.
Neurocomputing 70(13-15): 2331-2341 (2007) |
2005 |
5 | EE | Ilkka Kalliomäki,
Aki Vehtari,
Jouko Lampinen:
Shape analysis of concrete aggregates for statistical quality modeling.
Mach. Vis. Appl. 16(3): 197-201 (2005) |
2002 |
4 | EE | Aki Vehtari,
Jouko Lampinen:
Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities.
Neural Computation 14(10): 2439-2468 (2002) |
2001 |
3 | EE | Jouko Lampinen,
Aki Vehtari:
Bayesian approach for neural networks--review and case studies.
Neural Networks 14(3): 257-274 (2001) |
2000 |
2 | EE | Aki Vehtari,
Simo Särkkä,
Jouko Lampinen:
On MCMC Sampling in Bayesian MLP Neural Networks.
IJCNN (1) 2000: 317-322 |
1 | EE | Aki Vehtari,
Jouko Lampinen:
Bayesian MLP neural networks for image analysis.
Pattern Recognition Letters 21(13-14): 1183-1191 (2000) |