| 2009 |
| 12 | EE | Liqun Qi,
Defeng Sun:
Nonsmooth and Smoothing Methods for Nonlinear Complementarity Problems and Variational Inequalities.
Encyclopedia of Optimization 2009: 2671-2675 |
| 2008 |
| 11 | EE | Defeng Sun,
Jie Sun,
Liwei Zhang:
The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming.
Math. Program. 114(2): 349-391 (2008) |
| 10 | EE | Jein-Shan Chen,
Defeng Sun,
Jie Sun:
The SC1 property of the squared norm of the SOC Fischer-Burmeister function.
Oper. Res. Lett. 36(3): 385-392 (2008) |
| 2007 |
| 9 | EE | Zheng-Jian Bai,
Delin Chu,
Defeng Sun:
A Dual Optimization Approach to Inverse Quadratic Eigenvalue Problems with Partial Eigenstructure.
SIAM J. Scientific Computing 29(6): 2531-2561 (2007) |
| 2005 |
| 8 | EE | Defeng Sun,
Jie Sun:
Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions.
Math. Program. 103(3): 575-581 (2005) |
| 7 | EE | Fanwen Meng,
Defeng Sun,
Gongyun Zhao:
Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization.
Math. Program. 104(2-3): 561-581 (2005) |
| 2004 |
| 6 | EE | Zheng-Hai Huang,
Liqun Qi,
Defeng Sun:
Sub-quadratic convergence of a smoothing Newton algorithm for the P 0- and monotone LCP.
Math. Program. 99(3): 423-441 (2004) |
| 2003 |
| 5 | EE | Jong-Shi Pang,
Defeng Sun,
Jie Sun:
Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems.
Math. Oper. Res. 28(1): 39-63 (2003) |
| 2002 |
| 4 | EE | Defeng Sun,
Jie Sun:
Semismooth Matrix-Valued Functions.
Math. Oper. Res. 27(1): 150-169 (2002) |
| 2001 |
| 3 | EE | Defeng Sun:
A further result on an implicit function theorem for locally Lipschitz functions.
Oper. Res. Lett. 28(4): 193-198 (2001) |
| 2000 |
| 2 | | Liqun Qi,
Defeng Sun:
Improving the convergence of non-interior point algorithms for nonlinear complementarity problems.
Math. Comput. 69(229): 283-304 (2000) |
| 1998 |
| 1 | | Xiaojun Chen,
Liqun Qi,
Defeng Sun:
Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities.
Math. Comput. 67(222): 519-540 (1998) |