2007 |
13 | EE | Patrick Cégielski,
Denis Richard,
Maxim Vsemirnov:
On the Additive Theory of Prime Numbers.
Fundam. Inform. 81(1-3): 83-96 (2007) |
2003 |
12 | EE | Patrick Cégielski,
François Heroult,
Denis Richard:
On the amplitude of intervals of natural numbers whose every element has a common prime divisor with at least an extremity.
Theor. Comput. Sci. 1(303): 53-62 (2003) |
2001 |
11 | EE | Denis Richard:
What are weak arithmetics?
Theor. Comput. Sci. 257(1-2): 17-29 (2001) |
10 | EE | Patrick Cégielski,
Denis Richard:
Decidability of the theory of the natural integers with the cantor pairing function and the successor.
Theor. Comput. Sci. 257(1-2): 51-77 (2001) |
1999 |
9 | EE | Patrick Cégielski,
Denis Richard:
On Arithmetical First-Order Theories Allowing Encoding and Decoding of Lists.
Theor. Comput. Sci. 222(1-2): 55-75 (1999) |
1998 |
8 | | Alexis Bès,
Denis Richard:
Undecidable Extensions of Skolem Arithmetic.
J. Symb. Log. 63(2): 379-401 (1998) |
1997 |
7 | | Patrick Cégielski,
Leszek Pacholski,
Denis Richard,
Jerzy Tomasik,
Alex Wilkie:
Preface - Logic Colloquium '94, 21-30 July 1994, Clermont-Ferrand, France.
Ann. Pure Appl. Logic 89(1): 1 (1997) |
1996 |
6 | | Jean-Pierre Reveillès,
Denis Richard:
Back and Forth between Continuous and Discrete for the Working Computer Scientist.
Ann. Math. Artif. Intell. 16: 89-152 (1996) |
5 | | Patrick Cégielski,
Yuri Matiyasevich,
Denis Richard:
Definability and Decidability Issues in Extensions of the Integers with the Divisibility Predicate.
J. Symb. Log. 61(2): 515-540 (1996) |
1989 |
4 | | Denis Richard:
Definability in Terms of the Successor Function and the Coprimeness Predicate in the Set of Arbitrary Integers.
J. Symb. Log. 54(4): 1253-1287 (1989) |
1985 |
3 | EE | Maurice Pouzet,
Denis Richard:
Preface.
Discrete Mathematics 53: 1-2 (1985) |
2 | EE | Denis Richard:
All arithmetical sets of powers of primes are first-order definable in terms of the successor function and the coprimeness predicate.
Discrete Mathematics 53: 221-247 (1985) |
1 | | Denis Richard:
Answer to a Problem Raised by J. Robinson: the Arithmetic of Positive or Negative Integers is Definable From Successor and Divisibility.
J. Symb. Log. 50(4): 927-935 (1985) |