Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008 | ||
---|---|---|

21 | EE | Ian Anderson,
Donald A. Preece:
Some I terraces from I power-sequences, n being an odd prime.
Discrete Mathematics 308(18): 4086-4107 (2008) |

20 | EE | Ian Anderson,
Donald A. Preece:
Some da capo directed power-sequence Z_{n+1} terraces with n an odd prime power.
Discrete Mathematics 308(2-3): 192-206 (2008) |

19 | EE | Ian Anderson,
Donald A. Preece:
A general approach to constructing power-sequence terraces for Z_{n}.
Discrete Mathematics 308(5-6): 631-644 (2008) |

2007 | ||

18 | EE | Peter Dobcsányi, Donald A. Preece, Leonard H. Soicher: On balanced incomplete-block designs with repeated blocks. Eur. J. Comb. 28(7): 1955-1970 (2007) |

2005 | ||

17 | EE | Nicholas C. K. Phillips, Donald A. Preece, Walter D. Wallis: The seven classes of 5×6 triple arrays. Discrete Mathematics 293(1-3): 213-218 (2005) |

16 | EE | Ian Anderson,
Donald A. Preece:
Some power-sequence terraces for Z_{pq} with as few segments as possible.
Discrete Mathematics 293(1-3): 29-59 (2005) |

2004 | ||

15 | EE | Ian Anderson,
Donald A. Preece:
Narcissistic half-and-half power-sequence terraces for Z_{n} with n=pq.
Discrete Mathematics 279(1-3): 33-60 (2004)^{t} |

2003 | ||

14 | EE | Ian Anderson, Donald A. Preece: Power-sequence terraces for where n is an odd prime power. Discrete Mathematics 261(1-3): 31-58 (2003) |

13 | EE | Matthew A. Ollis, Donald A. Preece: Sectionable terraces and the (generalised) Oberwolfach problem. Discrete Mathematics 266(1-3): 399-416 (2003) |

12 | EE | R. A. Bailey, Matthew A. Ollis, Donald A. Preece: Round-dance neighbour designs from terraces. Discrete Mathematics 266(1-3): 69-86 (2003) |

2001 | ||

11 | EE | John P. Morgan, Donald A. Preece, David H. Rees: Nested balanced incomplete block designs. Discrete Mathematics 231(1-3): 351-389 (2001) |

1999 | ||

10 | Donald A. Preece, B. J. Vowden, Nicholas C. K. Phillips: Double Youden rectangles of sizes p(2p+1) and (p+1)(2p+1). Ars Comb. 51: (1999) | |

9 | B. J. Vowden, Donald A. Preece: Some New Infinite Series of Freeman-Youden Rectangles. Ars Comb. 51: (1999) | |

8 | EE | Donald A. Preece, B. J. Vowden: Some series of cyclic balanced hyper-graeco-Latin superimpositions of three Youden squares. Discrete Mathematics 197-198: 671-682 (1999) |

7 | EE | David H. Rees, Donald A. Preece: Perfect Graeco-Latin balanced incomplete block designs (pergolas). Discrete Mathematics 197-198: 691-712 (1999) |

1997 | ||

6 | EE | P. J. Owens, Donald A. Preece: Aspects of complete sets of 9 × 9 pairwise orthogonal latin squares. Discrete Mathematics 167-168: 519-525 (1997) |

5 | EE | Donald A. Preece: Some 6 × 11 Youden squares and double Youden rectangles. Discrete Mathematics 167-168: 527-541 (1997) |

1996 | ||

4 | P. J. Owens, Donald A. Preece: Some new non-cyclic latin squares that have cyclic and Youden properties. Ars Comb. 44: (1996) | |

1995 | ||

3 | EE | Donald A. Preece: How many 7 × 7 latin squares can be partitioned into Youden squares? Discrete Mathematics 138(1-3): 343-352 (1995) |

2 | EE | Donald A. Preece, B. J. Vowden: Graeco-Latin squares with embedded balanced superimpositions of Youden squares. Discrete Mathematics 138(1-3): 353-363 (1995) |

1994 | ||

1 | EE | Donald A. Preece: Double Youden rectangles - an update with examples of size 5x11. Discrete Mathematics 125(1-3): 309-317 (1994) |

1 | Ian Anderson | [14] [15] [16] [19] [20] [21] |

2 | R. A. Bailey | [12] |

3 | Peter Dobcsányi | [18] |

4 | John P. Morgan | [11] |

5 | Matthew A. Ollis | [12] [13] |

6 | P. J. Owens | [4] [6] |

7 | Nicholas C. K. Phillips | [10] [17] |

8 | David H. Rees | [7] [11] |

9 | Leonard H. Soicher | [18] |

10 | B. J. Vowden | [2] [8] [9] [10] |

11 | Walter D. Wallis (W. D. Wallis) | [17] |