2008 |
29 | EE | Dag Normann:
Internal Density Theorems for Hierarchies of Continuous Functionals.
CiE 2008: 467-475 |
2007 |
28 | EE | Arnold Beckmann,
Benedikt Löwe,
Dag Normann:
Logical Approaches to Computational Barriers: CiE 2006.
J. Log. Comput. 17(6): 1021-1023 (2007) |
2006 |
27 | EE | Dag Normann:
Computing with functionals - computability theory or computer science?
Bulletin of Symbolic Logic 12(1): 43-59 (2006) |
26 | EE | Dag Normann:
On sequential functionals of type 3.
Mathematical Structures in Computer Science 16(2): 279-289 (2006) |
25 | EE | S. Barry Cooper,
Benedikt Löwe,
Dag Normann:
Mathematics of computing at CiE 2005.
Mathematical Structures in Computer Science 16(5): 735-736 (2006) |
2005 |
24 | EE | Dag Normann:
Comparing hierarchies of total functionals
CoRR abs/cs/0509019: (2005) |
23 | EE | Dag Normann:
Comparing hierarchies of total functionals.
Logical Methods in Computer Science 1(2): (2005) |
2004 |
22 | EE | Dag Normann:
A Nonstandard Characterisation of the Type-structure of Continuous Functionals Over the Reals.
Electr. Notes Theor. Comput. Sci. 73: 141-147 (2004) |
21 | EE | Dag Normann:
Hierarchies of total functionals over the reals.
Theor. Comput. Sci. 316(1): 137-151 (2004) |
2002 |
20 | EE | Dag Normann,
Geir Waagbø:
Limit spaces and transfinite types.
Arch. Math. Log. 41(6): 525-539 (2002) |
19 | EE | Dag Normann:
Representation theorems for transfinite computability and definability.
Arch. Math. Log. 41(8): 721-741 (2002) |
18 | EE | Dag Normann:
Continuity, proof systems and the theory of transfinite computations.
Arch. Math. Log. 41(8): 765-788 (2002) |
17 | EE | Dag Normann,
Christian Rordam:
The Computational Power of Muomega.
Math. Log. Q. 48(1): 117-124 (2002) |
16 | EE | Dag Normann:
Exact real number computations relative to hereditarily total functionals.
Theor. Comput. Sci. 284(2): 437-453 (2002) |
2001 |
15 | EE | Dag Normann:
Definability of Total Objects in PCF and Related Calculi.
TLCA 2001: 4-5 |
2000 |
14 | EE | Dag Normann:
The Cook-Berger problem - A guide to the solution.
Electr. Notes Theor. Comput. Sci. 35: (2000) |
13 | EE | Dag Normann:
The continuous functionals of finite types over the reals.
Electr. Notes Theor. Comput. Sci. 35: (2000) |
12 | | Dag Normann:
Computability over The Partial Continuous Functionals.
J. Symb. Log. 65(3): 1133-1142 (2000) |
1999 |
11 | | Dag Normann,
Erik Palmgren,
Viggo Stoltenberg-Hansen:
Hyperfinite Type Structures.
J. Symb. Log. 64(3): 1216-1242 (1999) |
1997 |
10 | EE | Dag Normann:
Hereditarily effective typestreams.
Arch. Math. Log. 36(3): 219-225 (1997) |
9 | EE | Dag Normann:
Closing the gap between the continuous functionals and recursion in 3E.
Arch. Math. Log. 36(4-5): 269-287 (1997) |
8 | EE | Lill Kristiansen,
Dag Normann:
Total objects in inductively defined types.
Arch. Math. Log. 36(6): 405-436 (1997) |
1992 |
7 | | Jean-Yves Girard,
Dag Normann:
Embeddability of PTYKES.
J. Symb. Log. 57(2): 659-676 (1992) |
1984 |
6 | | Edward R. Griffor,
Dag Normann:
The Definability of E(alpha).
J. Symb. Log. 49(2): 437-442 (1984) |
1983 |
5 | | Dag Normann:
Characterizing the Continuous Functionals.
J. Symb. Log. 48(4): 965-969 (1983) |
1981 |
4 | | Dag Normann:
Countable Functionals and the Projective Hierarchy.
J. Symb. Log. 46(2): 209-215 (1981) |
1980 |
3 | | Dag Normann,
Stanley S. Wainer:
The 1-Section of a Countable Functional.
J. Symb. Log. 45(3): 549-562 (1980) |
1978 |
2 | | Dag Normann:
A Continuous Functional with Noncollapsing Hierarchy.
J. Symb. Log. 43(3): 487-491 (1978) |
1976 |
1 | | Johan Moldestad,
Dag Normann:
Models for Recursion Theory.
J. Symb. Log. 41(4): 719-729 (1976) |