| 2009 |
| 32 | EE | Jean-Yves Audibert,
Rémi Munos,
Csaba Szepesvári:
Exploration-exploitation tradeoff using variance estimates in multi-armed bandits.
Theor. Comput. Sci. 410(19): 1876-1902 (2009) |
| 2008 |
| 31 | | Sertan Girgin,
Manuel Loth,
Rémi Munos,
Philippe Preux,
Daniil Ryabko:
Recent Advances in Reinforcement Learning, 8th European Workshop, EWRL 2008, Villeneuve d'Ascq, France, June 30 - July 3, 2008, Revised and Selected Papers
Springer 2008 |
| 30 | EE | Raphaël Maîtrepierre,
Jérémie Mary,
Rémi Munos:
Adaptive play in Texas Hold'em Poker.
ECAI 2008: 458-462 |
| 29 | EE | Jean-François Hren,
Rémi Munos:
Optimistic Planning of Deterministic Systems.
EWRL 2008: 151-164 |
| 28 | EE | Yizao Wang,
Jean-Yves Audibert,
Rémi Munos:
Algorithms for Infinitely Many-Armed Bandits.
NIPS 2008: 1729-1736 |
| 27 | EE | Sébastien Bubeck,
Rémi Munos,
Gilles Stoltz,
Csaba Szepesvári:
Online Optimization in X-Armed Bandits.
NIPS 2008: 201-208 |
| 26 | EE | Pierre-Arnaud Coquelin,
Romain Deguest,
Rémi Munos:
Particle Filter-based Policy Gradient in POMDPs.
NIPS 2008: 337-344 |
| 25 | EE | Sébastien Bubeck,
Rémi Munos,
Gilles Stoltz:
Pure Exploration for Multi-Armed Bandit Problems
CoRR abs/0802.2655: (2008) |
| 24 | EE | András Antos,
Csaba Szepesvári,
Rémi Munos:
Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning 71(1): 89-129 (2008) |
| 2007 |
| 23 | EE | Jean-Yves Audibert,
Rémi Munos,
Csaba Szepesvári:
Tuning Bandit Algorithms in Stochastic Environments.
ALT 2007: 150-165 |
| 22 | EE | András Antos,
Rémi Munos,
Csaba Szepesvári:
Fitted Q-iteration in continuous action-space MDPs.
NIPS 2007 |
| 21 | EE | Pierre-Arnaud Coquelin,
Rémi Munos:
Bandit Algorithms for Tree Search
CoRR abs/cs/0703062: (2007) |
| 20 | EE | Rémi Munos:
Analyse en norme Lp de l'algorithme d'itérations sur les valeurs avec approximations.
Revue d'Intelligence Artificielle 21(1): 53-74 (2007) |
| 2006 |
| 19 | EE | András Antos,
Csaba Szepesvári,
Rémi Munos:
Learning Near-Optimal Policies with Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path.
COLT 2006: 574-588 |
| 18 | EE | Rémi Munos:
Geometric Variance Reduction in Markov Chains: Application to Value Function and Gradient Estimation.
Journal of Machine Learning Research 7: 413-427 (2006) |
| 17 | EE | Rémi Munos:
Policy Gradient in Continuous Time.
Journal of Machine Learning Research 7: 771-791 (2006) |
| 2005 |
| 16 | | Rémi Munos:
Error Bounds for Approximate Value Iteration.
AAAI 2005: 1006-1011 |
| 15 | | Rémi Munos:
Geometric Variance Reduction in Markov Chains. Application to Value Function and Gradient Estimation.
AAAI 2005: 1012-1017 |
| 14 | | Rémi Munos:
Policy gradient in continuous time.
CAP 2005: 201-216 |
| 13 | EE | Csaba Szepesvári,
Rémi Munos:
Finite time bounds for sampling based fitted value iteration.
ICML 2005: 880-887 |
| 2003 |
| 12 | | Rémi Munos:
Error Bounds for Approximate Policy Iteration.
ICML 2003: 560-567 |
| 2002 |
| 11 | | Rémi Munos,
Andrew W. Moore:
Variable Resolution Discretization in Optimal Control.
Machine Learning 49(2-3): 291-323 (2002) |
| 2001 |
| 10 | EE | Rémi Munos:
Efficient Resources Allocation for Markov Decision Processes.
NIPS 2001: 1571-1578 |
| 2000 |
| 9 | | Rémi Munos,
Andrew W. Moore:
Rates of Convergence for Variable Resolution Schemes in Optimal Control.
ICML 2000: 647-654 |
| 8 | | Rémi Munos:
A Study of Reinforcement Learning in the Continuous Case by the Means of Viscosity Solutions.
Machine Learning 40(3): 265-299 (2000) |
| 1999 |
| 7 | | Rémi Munos,
Andrew W. Moore:
Variable Resolution Discretization for High-Accuracy Solutions of Optimal Control Problems.
IJCAI 1999: 1348-1355 |
| 1998 |
| 6 | | Rémi Munos:
A General Convergence Method for Reinforcement Learning in the Continuous Case.
ECML 1998: 394-405 |
| 5 | EE | Rémi Munos,
Andrew W. Moore:
Barycentric Interpolators for Continuous Space and Time Reinforcement Learning.
NIPS 1998: 1024-1030 |
| 1997 |
| 4 | | Rémi Munos:
Finite-Element Methods with Local Triangulation Refinement for Continuous Reimforcement Learning Problems.
ECML 1997: 170-182 |
| 3 | | Rémi Munos:
A Convergent Reinforcement Learning Algorithm in the Continuous Case Based on a Finite Difference Method.
IJCAI (2) 1997: 826-831 |
| 2 | | Rémi Munos,
Paul Bourgine:
Reinforcement Learning for Continuous Stochastic Control Problems.
NIPS 1997 |
| 1996 |
| 1 | | Rémi Munos:
A Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning.
ICML 1996: 337-345 |