2009 |
30 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
A Description of Iterative Reflections of Monads (Extended Abstract).
FOSSACS 2009: 152-166 |
29 | EE | Stefan Milius,
Lawrence S. Moss:
The Category Theoretic Solution of Recursive Program Schemes
CoRR abs/0904.2385: (2009) |
2008 |
28 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Bases for parametrized iterativity.
Inf. Comput. 206(8): 966-1002 (2008) |
27 | EE | Stefan Milius,
Lawrence S. Moss:
Corrigendum to: "The category theoretic solution of recursive program schemes" [TCS 366 (2006) 3-59].
Theor. Comput. Sci. 403(2-3): 409-415 (2008) |
2007 |
26 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
What Are Iteration Theories?
MFCS 2007: 240-252 |
25 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Algebras with parametrized iterativity.
Theor. Comput. Sci. 388(1-3): 130-151 (2007) |
2006 |
24 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Elgot Algebras
CoRR abs/cs/0609040: (2006) |
23 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Elgot Algebras: (Extended Abstract).
Electr. Notes Theor. Comput. Sci. 155: 87-109 (2006) |
22 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
How Iterative are Iterative Algebras?
Electr. Notes Theor. Comput. Sci. 164(1): 157-175 (2006) |
21 | EE | Jirí Adámek,
Stefan Milius:
Special Issue: Seventh Workshop on Coalgebraic Methods in Computer Science 2004.
Inf. Comput. 204(4): 435-436 (2006) |
20 | EE | Jirí Adámek,
Stefan Milius:
Terminal coalgebras and free iterative theories.
Inf. Comput. 204(7): 1139-1172 (2006) |
19 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Elgot Algebras.
Logical Methods in Computer Science 2(5): (2006) |
18 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Iterative algebras at work.
Mathematical Structures in Computer Science 16(6): 1085-1131 (2006) |
17 | EE | Stefan Milius,
Lawrence S. Moss:
The category-theoretic solution of recursive program schemes.
Theor. Comput. Sci. 366(1-2): 3-59 (2006) |
2005 |
16 | EE | Stefan Milius,
Lawrence S. Moss:
The Category Theoretic Solution of Recursive Program Schemes.
CALCO 2005: 293-312 |
15 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Iterative Algebras for a Base.
Electr. Notes Theor. Comput. Sci. 122: 147-170 (2005) |
14 | EE | Stefan Milius:
Completely iterative algebras and completely iterative monads.
Inf. Comput. 196(1): 1-41 (2005) |
13 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
A general final coalgebra theorem.
Mathematical Structures in Computer Science 15(3): 409-432 (2005) |
2004 |
12 | EE | Jirí Adámek,
Stefan Milius:
Preface.
Electr. Notes Theor. Comput. Sci. 106: 1-2 (2004) |
11 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
From Iterative Algebras to Iterative Theories (Extended Abstract).
Electr. Notes Theor. Comput. Sci. 106: 3-24 (2004) |
10 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
On coalgebra based on classes.
Theor. Comput. Sci. 316(1): 3-23 (2004) |
2003 |
9 | EE | Stefan Milius:
On Colimits in Categories of Relations.
Applied Categorical Structures 11(3): 287-312 (2003) |
8 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Some Remarks on Finitary and Iterative Monads.
Applied Categorical Structures 11(6): 521-541 (2003) |
7 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
On coalgebra based on classes
CoRR cs.LO/0306118: (2003) |
6 | | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Free Iterative Theories: A Coalgebraic View.
Mathematical Structures in Computer Science 13(2): 259-320 (2003) |
5 | EE | Peter Aczel,
Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Infinite trees and completely iterative theories: a coalgebraic view.
Theor. Comput. Sci. 300(1-3): 1-45 (2003) |
2002 |
4 | | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Parametric corecursion and completely iterative monads.
FICS 2002: 2-5 |
3 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
Final Coalgebras And a Solution Theorem for Arbitrary Endofunctors.
Electr. Notes Theor. Comput. Sci. 65(1): (2002) |
2 | EE | Stefan Milius:
On Iteratable Endofunctors.
Electr. Notes Theor. Comput. Sci. 69: (2002) |
1 | EE | Jirí Adámek,
Stefan Milius,
Jiri Velebil:
On Rational Monads and Free Iterative Theories.
Electr. Notes Theor. Comput. Sci. 69: (2002) |