| 2008 |
| 22 | EE | Tilman Knebel,
Sepp Hochreiter,
Klaus Obermayer:
An SMO Algorithm for the Potential Support Vector Machine.
Neural Computation 20(1): 271-287 (2008) |
| 2007 |
| 21 | | Sepp Hochreiter,
Roland Wagner:
Bioinformatics Research and Development, First International Conference, BIRD 2007, Berlin, Germany, March 12-14, 2007, Proceedings
Springer 2007 |
| 20 | EE | Steffen Grünewälder,
Sepp Hochreiter,
Klaus Obermayer:
Optimality of LSTD and its Relation to MC.
IJCNN 2007: 338-343 |
| 19 | EE | Sepp Hochreiter,
Martin Heusel,
Klaus Obermayer:
Fast model-based protein homology detection without alignment.
Bioinformatics 23(14): 1728-1736 (2007) |
| 18 | EE | Willem Talloen,
Djork-Arné Clevert,
Sepp Hochreiter,
Dhammika Amaratunga,
Luc Bijnens,
Stefan Kass,
Hinrich W. H. Göhlmann:
I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data.
Bioinformatics 23(21): 2897-2902 (2007) |
| 2006 |
| 17 | EE | Johannes Mohr,
Imke Puis,
Jana Wrase,
Sepp Hochreiter,
Andreas Heinz,
Klaus Obermayer:
P-SVM Variable Selection for Discovering Dependencies Between Genetic and Brain Imaging Data.
IJCNN 2006: 5020-5027 |
| 16 | EE | Sepp Hochreiter,
Djork-Arné Clevert,
Klaus Obermayer:
A new summarization method for affymetrix probe level data.
Bioinformatics 22(8): 943-949 (2006) |
| 15 | EE | Sepp Hochreiter,
Klaus Obermayer:
Support Vector Machines for Dyadic Data.
Neural Computation 18(6): 1472-1510 (2006) |
| 2002 |
| 14 | EE | Sepp Hochreiter,
Michael Mozer,
Klaus Obermayer:
Coulomb Classifiers: Generalizing Support Vector Machines via an Analogy to Electrostatic Systems.
NIPS 2002: 545-552 |
| 13 | EE | Sepp Hochreiter,
Klaus Obermayer:
Feature Selection and Classification on Matrix Data: From Large Margins to Small Covering Numbers.
NIPS 2002: 889-896 |
| 2001 |
| 12 | EE | Sepp Hochreiter,
Michael Mozer:
A Discrete Probabilistic Memory Model for Discovering Dependencies in Time.
ICANN 2001: 661-668 |
| 11 | EE | Sepp Hochreiter,
A. Steven Younger,
Peter R. Conwell:
Learning to Learn Using Gradient Descent.
ICANN 2001: 87-94 |
| 2000 |
| 10 | | Sepp Hochreiter,
Michael Mozer:
Beyond Maximum Likelihood and Density Estimation: A Sample-Based Criterion for Unsupervised Learning of Complex Models.
NIPS 2000: 535-541 |
| 1999 |
| 9 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
Nonlinear ICA through low-complexity autoencoders.
ISCAS (5) 1999: 53-56 |
| 8 | | Sepp Hochreiter,
Jürgen Schmidhuber:
Feature Extraction Through LOCOCODE.
Neural Computation 11(3): 679-714 (1999) |
| 1998 |
| 7 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
Source Separation as a By-Product of Regularization.
NIPS 1998: 459-465 |
| 6 | EE | Sepp Hochreiter:
The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(2): 107-116 (1998) |
| 1997 |
| 5 | | Sepp Hochreiter,
Jürgen Schmidhuber:
Unsupervised Coding with LOCOCODE.
ICANN 1997: 655-660 |
| 4 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
Flat Minima
Neural Computation 9(1): 1-42 (1997) |
| 3 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
Long Short-Term Memory.
Neural Computation 9(8): 1735-1780 (1997) |
| 1996 |
| 2 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
LSTM can Solve Hard Long Time Lag Problems.
NIPS 1996: 473-479 |
| 1994 |
| 1 | EE | Sepp Hochreiter,
Jürgen Schmidhuber:
Simplifying Neural Nets by Discovering Flat Minima.
NIPS 1994: 529-536 |